首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   44篇
电工技术   9篇
化学工业   89篇
金属工艺   4篇
机械仪表   17篇
建筑科学   31篇
能源动力   62篇
轻工业   29篇
水利工程   1篇
无线电   33篇
一般工业技术   93篇
冶金工业   19篇
原子能技术   11篇
自动化技术   66篇
  2024年   1篇
  2023年   13篇
  2022年   15篇
  2021年   18篇
  2020年   15篇
  2019年   11篇
  2018年   15篇
  2017年   15篇
  2016年   22篇
  2015年   11篇
  2014年   22篇
  2013年   34篇
  2012年   29篇
  2011年   44篇
  2010年   27篇
  2009年   27篇
  2008年   37篇
  2007年   23篇
  2006年   15篇
  2005年   9篇
  2004年   9篇
  2003年   12篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有464条查询结果,搜索用时 15 毫秒
41.
42.
Nanoscale transistors employing an individual semiconducting carbon nanotube as the channel hold great potential for logic circuits with large integration densities that can be manufactured on glass or plastic substrates. Carbon nanotubes are usually produced as a mixture of semiconducting and metallic nanotubes. Since only semiconducting nanotubes yield transistors, the metallic nanotubes are typically not utilized. However, integrated circuits often require not only transistors, but also resistive load devices. Here we show that many of the metallic carbon nanotubes that are deposited on the substrate along with the semiconducting nanotubes can be conveniently utilized as load resistors with favorable characteristics for the design of integrated circuits. We also demonstrate the fabrication of arrays of transistors and resistors, each based on an individual semiconducting or metallic carbon nanotube, and their integration on glass substrates into logic circuits with switching frequencies of up to 500 kHz using a custom-designed metal interconnect layer.  相似文献   
43.
In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed by pressing a silicon stamp containing a μm size raised grid structure into the TiO2 by use of a hydraulic press (1 ton/50 cm2). The performance of these microstructured substrates in a ETA cell sensitized by a thermally evaporated or chemical bath deposited PbS film and completed by a PEDOT:PSS hole conductor layer and a Au counter electrode is compared to that of planar substrates. Surprisingly planar films produced better performance than micro-structured films. A simple model implying photoconductive shunting paths revealed by junction breakdown at negative bias under illumination is presented.  相似文献   
44.
45.
Hemocompatibility can be conferred on a biomaterial by covering this material with a monolayer of endothelial cells. The endothelial cell is an epithelial cell of mesenchymal origin, that features a specific phenotype with homotypic intercellular interactions and with specialized cell-matrix interactions. These interactions are mandatory to the normal barrier function and the non-thrombogenicity of the endothelial monolayer and are maintained in vivo at shear stresses ranging from 10-5 to 10-3 N cm-2. The endothelial monolayer grafted on a biomaterial should meet similar requirements. We have constructed a rotating disc device to investigate the effects of differential shear stresses on cell-cell and cell-matrix interactions in a monolayer of endothelial cells grafted on a disc-shaped biomaterial. The range of shear stresses that are being applied by the device vary from 0–10-4 N cm-2 to 0–2×10-3 N cm-2. In a series of experiments with discs of plasma discharge treated polycarbonate (PC) that are coated with fibronectin, it has been shown that a monolayer of endothelial cells grafted on these discs starts to lose intercellular contacts and cell-fibronectin interactions at shear stresses of 10-4 N cm-2. Coating of the PC discs with a complex extracellular matrix, synthesized by arterial smooth muscle cells in culture, prior to endothelial cell seeding results in the formation of a monolayer, which retains its integrity at shear stresses up to 2×10-3 N cm-2.  相似文献   
46.
A compact platform for testing solar cells is presented. The light source comprises a multi‐wavelength high‐power LED (light emitting diode) array allowing the homogenous illumination of small laboratory solar cell devices (substrate size 50 × 25 mm) within the 390–940 nm wavelength range. The spectrum can be synthesized by independent tuning of the 18 different wavelengths to mimic AM1.5G as well as various indoor lamp spectra. The intensity can be controlled with a 214‐bit accuracy and intensities up to 3 suns are possible with an approximate AM1.5G spectral distribution. For several wavelengths intensities up to 10 suns is possible, and for a few wavelengths up to 30 suns can be reached. The setup is equipped with reference diodes and an optical fibre coupling enabling calibration, monitoring and control of the light impinging on the sample. Through a computer controlled interface, it is possible to perform all the commonly employed measurements on the solar cell at very high speed without moving the sample. In particular, the LED‐based illumination system provides an alternative to light‐biased incident photon‐to‐current efficiency measurement to be performed which we demonstrate. Both top and bottom contact is possible and the atmosphere can be controlled around the sample during measurements. The setup was developed for the field of polymer and organic solar cells with particular emphasis on enabling different laboratories to perform measurements in the same manner and obtain a common basis for comparing data. The use of the platform is demonstrated using a standard P3HT:PCBM polymer solar cell but is generally applicable to any solar cell technology with a spectral response in the 390–950 nm region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
47.
There is currently much interest in the use of pseudocereals for developing nutritious food products. Amaranth, buckwheat, and quinoa are the 3 major pseudocereals in terms of world production. They contain high levels of starch, proteins, dietary fiber, minerals, vitamins, and other bioactives. Their proteins have well‐balanced amino acid compositions, are more sustainable than those from animal sources, and can be consumed by patients suffering from celiac disease. While pseudocereal proteins mainly consist of albumins and globulins, the predominant cereal proteins are prolamins and glutelins. We here discuss the structural properties, denaturation and aggregation behaviors, and solubility, as well as the foaming, emulsifying, and gelling properties of amaranth, buckwheat, and quinoa proteins. In addition, the technological impact of incorporating amaranth, buckwheat, and quinoa in bread, pasta, noodles, and cookies and strategies to affect the functionality of pseudocereal flour proteins are discussed. Literature concerning pseudocereal proteins is often inconsistent and contradictory, particularly in the methods used to obtain globulins and glutelins. Also, most studies on protein denaturation and techno‐functional properties have focused on isolates obtained by alkaline extraction and subsequent isoelectric precipitation at acidic pH, even if the outcome of such studies is not necessarily relevant for understanding the role of the native proteins in food processing. Finally, even though establishing in‐depth structure–function relationships seems challenging, it would undoubtedly be of major help in the design of tailor‐made pseudocereal foods.  相似文献   
48.
This paper presents a newly developed high‐fidelity fluid–structure interaction simulation tool for geometrically resolved rotor simulations of wind turbines. The tool consists of a partitioned coupling between the structural part of the aero‐elastic solver HAWC2 and the finite volume computational fluid dynamics (CFD) solver EllipSys3D. The paper shows that the implemented loose coupling scheme, despite a non‐conservative force transfer, maintains a sufficient numerical stability and a second‐order time accuracy. The use of a strong coupling is found to be redundant. In a first test case, the newly developed coupling between HAWC2 and EllipSys3D (HAWC2CFD) is utilized to compute the aero‐elastic response of the NREL 5‐MW reference wind turbine (RWT) under normal operational conditions. A comparison with the low‐fidelity but state‐of‐the‐art aero‐elastic solver HAWC2 reveals a very good agreement between the two approaches. In a second test case, the response of the NREL 5‐MW RWT is computed during a yawed and thus asymmetric inflow. The continuous good agreement confirms the qualities of HAWC2CFD but also illustrates the strengths of a computationally cheaper blade element momentum theory (BEM) based solver, as long as the solver is applied within the boundaries of the employed engineering models. Two further test cases encompass flow situations, which are expected to exceed the limits of the BEM model. However, the simulation of the NREL 5‐MW RWT during an emergency shut down situation still shows good agreements in the predicted structural responses of HAWC2 and HAWC2CFD since the differences in the computed force signals only persist for an insignificantly short time span. The considerable new capabilities of HAWC2CFD are finally demonstrated by simulating vortex‐induced vibrations on the DTU 10‐MW wind turbine blade in standstill. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
49.
The synthesis of a zwitterionic ruthenium dye that binds to anatase surfaces and has a built-in functionality that allows for the attachment of a conjugated polymer chain is presented. The system was found to adsorb on the surface of anatase anchored by the ruthenium dye. Two types of devices were prepared: standard photoelectrochemical (PEC) solar cells and polymer solar cells. The PEC solar cells employed a sandwich geometry between TiO2 nanoporous photoanodes and Pt counter electrodes using LiI/I2 in CH3CN as an electrolyte. The polymer solar cells employed planar anatase electrodes and the complex was adsorbed onto the surface before evaporation of gold electrodes. Alternative devices were obtained by spincoating of the polymer solution onto PEDOT:PSS covered indium-doped tin oxide substrates. PEC solar cells gave the best results and the main finding was that the polymer chain served as a light harvesting antenna for the ruthenium dye.  相似文献   
50.
In this paper, 3D Navier–Stokes simulations of the unsteady flow over the NREL Phase VI turbine are presented. The computations are carried out using the structured grid, incompressible, finite volume flow solver EllipSys3D, which has been extended to include the use of overset grids. Computations are presented, firstly, on an isolated rotor, and secondly, on the downwind configuration of the turbine, which includes modelling of the rotor, tower and tunnel floor boundary. The solver successfully captures the unsteady interaction between the rotor blades and the tower wake, and the computations are in good agreement with the experimental data available. The interaction between the rotor and the tower induces significant increases in the transient loads on the blades and is characterized by an instant deloading and subsequent reloading of the blade, associated with the velocity deficit in the wake, combined with the interaction with the shed vortices, which causes a strongly time‐varying response. Finally, the results show that the rotor has a strong effect on the tower shedding frequency, causing under certain flow conditions vortex lock‐in to take place on the upper part of the tower. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号