首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   0篇
  国内免费   2篇
金属工艺   117篇
轻工业   1篇
一般工业技术   29篇
冶金工业   40篇
  2018年   1篇
  2014年   1篇
  2010年   2篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   8篇
  2003年   2篇
  2002年   8篇
  2001年   3篇
  2000年   4篇
  1999年   6篇
  1998年   10篇
  1997年   9篇
  1996年   9篇
  1995年   8篇
  1994年   8篇
  1993年   6篇
  1992年   9篇
  1991年   7篇
  1990年   6篇
  1989年   8篇
  1988年   11篇
  1987年   9篇
  1986年   9篇
  1985年   7篇
  1984年   14篇
  1983年   4篇
  1980年   5篇
  1979年   2篇
  1977年   2篇
  1972年   3篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
121.
Microalloying of Sc, Ni, and Ce in an advanced Al-Zn-Mg-Cu alloy   总被引:9,自引:0,他引:9  
Using transmission electron microscopy (TEM), scanning electron microscopy, X-ray diffraction (XRD), and optical microscopy, the effects of microalloying elements of Sc, Ni, and Ce on the microstructure of a new super-high-strength ingot metallurgy (IM)/Al-Zn-Mg-Cu alloy (C912) have been correlated with mechanical properties and stress corrosion cracking (SCC) behavior. Using microalloying with Sc, Ni, and Ce, the C912 alloy can exhibit very high strength and good SCC resistance. Compared to the baseline C912 alloy, Sc refines the microstructure and retards recrystallization, Ni promotes the development of matrix precipitates, which enhance the strength and SCC resistance, and Ce has little effect on alloy strengthening in the three microalloying additions studied. The Sc-containing alloy (C912S) is the most attractive and even exhibits higher strength (ultimate tensile strength (UTS) greather than 660MPa) than the new Alcoa aluminum alloy 7055 and the Russian alloy B96, which have the highest strengths of the commercial IM/Al-Zn-Mg-Cu alloys.  相似文献   
122.
123.
Nb3Sn was processed via mechanical alloying (MA). The powder mixture comprised of stoichiometric proportions of elemental niobium and tin powder was mechanically alloyed for 3 hours and the mechanically alloyed powder mixture was heat treated. While MA resulted in Nb-Sn solid solution, the reaction leading to the formation of Nb3Sn occurs during the subsequent heat treatment of the powder mixture.  相似文献   
124.
125.
Titanium golf club woods are capturing a huge share of the market for golfing equipment. This article describes this phenomenon and discusses emerging titanium irons and putters.  相似文献   
126.
Rapidly solidified (RS) Al–Fe–Ce alloys were prepared by melt spinning. The phases present and the thermal stability, at temperatures up to 500 °C, were then followed by X-ray analysis, chemistry, hardness and thermal analysis techniques. The results obtained indicated that the alloys studied have enhanced mechanical properties compared to commercial aluminium alloys and castings of the same alloy compositions, and the RS alloy also exhibit good stability up to about 300 °C; a result of stable second phase particles. It is suggested that these results indicate that there are two mechanisms responsible for the hardening and stability of the RS alloys: solid solution strengthening at lower temperatures, and semicoherent particles formed from supersaturated solid solution at higher temperature. The maximum hardness, after 2 h ageing occurred at about 300 °C. At higher temperatures the dispersed phase became incoherent with a dramatic loss in hardness.  相似文献   
127.
128.
129.
130.
Titanium in the family automobile: The cost challenge   总被引:4,自引:0,他引:4  
With advances in extraction/fabrication techniques and ever-increasing gasoline prices, the advantage of using lightweight materials such as aluminum, magnesium, and titanium in automobiles continues to increase, particularly for the first two metals. The major drawback for titanium, much more so than the other light metals, is high cost. However, innovative extraction and fabrication approaches are leading to decreased cost. This paper discusses the present status and future potential for titanium use in the family automobile. For more information, contact F.H. Froes, Institute for Materials and Advanced Processes, University of Idaho, McClure Hall, Room 437, Moscow, ID 83844-3026; e-mail: imap@uidaho.edu.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号