首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   769篇
  免费   44篇
  国内免费   4篇
电工技术   7篇
化学工业   191篇
金属工艺   16篇
机械仪表   33篇
建筑科学   17篇
能源动力   64篇
轻工业   69篇
水利工程   6篇
石油天然气   3篇
无线电   73篇
一般工业技术   176篇
冶金工业   58篇
原子能技术   4篇
自动化技术   100篇
  2024年   6篇
  2023年   16篇
  2022年   40篇
  2021年   47篇
  2020年   44篇
  2019年   45篇
  2018年   53篇
  2017年   35篇
  2016年   39篇
  2015年   25篇
  2014年   31篇
  2013年   62篇
  2012年   39篇
  2011年   42篇
  2010年   37篇
  2009年   50篇
  2008年   43篇
  2007年   20篇
  2006年   16篇
  2005年   10篇
  2004年   9篇
  2003年   1篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   10篇
  1998年   15篇
  1997年   6篇
  1996年   6篇
  1995年   8篇
  1994年   2篇
  1993年   6篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1981年   1篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有817条查询结果,搜索用时 0 毫秒
81.
Due to unique physiochemical properties, nanoparticles (NPs) have acquired substantial attention in the field of research. However, threats of ecotoxicity and phytotoxicity have limited their biological applications. In this study in vivo experiments were performed to determine the effect of CuO (12.5, 25 and 50 mg/kg) and ZnO (200, 400 and 600 mg/kg) NPs on growth, and antioxidant activities of Brassica nigra. The results showed that CuO NPs did not affect the seed germination while presence of ZnO NPs in the soil generated an inhibitory effect. Both CuO and ZnO NPs positively influenced the growth of stem and other physiological parameters i.e. stem height increased (23%) at 50 mg/kg CuO while root length decreased (up to 44%) with an increase in the concentration of NPs. Phytochemical screening of apical, middle and basal leaves showed elevated phenolic and flavonoid contents in the range of 15.3–59 μg Gallic Acid Equivalent (GAE)/mg Dry Weight (DW) and 10–35 μg Querceitin Equivalent (QE)/mg DW, respectively, in NPs‐treated plants. Antioxidant activity was higher in CuO NPs‐treated plants as compared to ZnO and control plants. Results conclude that CuO and ZnO NPs at low concentrations can be exploited as nanofertilisers in agriculture fields.Inspec keywords: biochemistry, enzymes, renewable materials, crops, nanoparticles, soil, nanofabrication, zinc compounds, organic compounds, agricultural products, toxicology, nanobiotechnologyOther keywords: antioxidative response, ZnO nanoparticles exposure, soil conditions, unique physiochemical properties, germination, antioxidant activities, brassica nigra plant, antioxidant activity, CuO NP‐treated plants, control plants, ZnO NPs effect, mass 15.3 mug to 59.0 mug, mass 10.0 mug to 35.0 mug, CuO, ZnO  相似文献   
82.
The adaptive immune system has implications in pathology of Parkinson’s disease (PD). Research data demonstrated that the peripheral CD4+ T-cell population decreased in pathogenesis of PD. The effect of damaged dopaminergic neurons on peripheral T cells of PD is still unknown. In this study, we constructed a neuronal and glial cells co-culture model by using human neuroblastoma cells SH-SY5Y and gliomas cells U87. After the co-culture cells were treated with neurotoxin 1-methyl-4-phenylpyridinium (MPP+) for 24 h, the conditioned media was harvested and used to cultivate T-cell leukemia Jurkat cells for another 24 h. We then analyzed the cell proliferation, cell cycle and necrosis effect of Jurkat cells. The results showed that co-culture medium of SH-SY5Y and U87 cells with MPP+ treatment inhibited the proliferation of Jurkat cells compared to control medium without MPP+, even though the same concentration of MPP+ had very little toxicity to the Jurkat cell. Furthermore, co-culture medium with low concentration of MPP+ (100 µM) arrested Jurkat cells cycle in G2/M phase through increasing cell cycle division 2 (CDC2) and CyclinB1 expression level, whereas co-culture medium with high concentration of MPP+ (500 µM) induced Jurkat cell necrosis through cellular swelling and membrane breakage. Our data implies that damaged dopamine neurons with glial cells can lead to the reduced number or inhibited proliferation activity of peripheral T cells.  相似文献   
83.
Technical Physics Letters - Reynolds averaged Navier–Stokes equations closed using the Menter shear-stress-transfer model have been numerically solved on multiblock intersecting structured...  相似文献   
84.
A new family of highly soluble electrophosphorescent dopants based on a series of tris‐cyclometalated iridium(III) complexes (14) of 2‐(carbazol‐3‐yl)‐4/5‐R‐pyridine ligands with varying molecular dipole strengths have been synthesized. Highly efficient, solution‐processed, single‐layer, electrophosphorescent diodes utilizing these complexes have been prepared and characterized. The high triplet energy poly(9‐vinylcarbazole) PVK is used as a host polymer doped with 2‐(4‐biphenylyl)‐5‐(4‐tert‐butyl‐phenyl)‐1,3,4‐oxadiazole (PBD) for electron transport. Devices with a current efficiency of 40 cd A?1 corresponding to an EQE of 12% can thus be achieved. The effect of the type and position of the substituent (electron‐withdrawing group (CF3) and electron‐donating group (OMe)) on the molecular dipole moment of the complexes has been investigated. A correlation between the absorption strength of the singlet metal‐to‐ligand charge‐transfer (1MLCT) transition and the luminance spectral red shift as a function of solvent polarity is observed. The strength of the transition dipole moments for complexes 1–4 has also been obtained from TD‐DFT computations, and is found to be consistent with the observed molecular dipole moments of these complexes. The relatively long lifetime of the excitons of the phosphorescence (microseconds) compared to the charge‐carrier scattering time (less than nanoseconds), allows the transition dipole moment to be considered as a “quasi permanent dipole”. Therefore, the carrier mobility is sufficiently affected by the long‐lived transition dipole moments of the phosphorescent molecules, which are randomly oriented in the medium. The dopant dipoles cause positional and energetic disorder because of the locally modified polarization energy. Furthermore, the electron‐withdrawing group CF3 induces strong carrier dispersion that enhances the electron mobility. Therefore, the strong transition dipole moment in complexes 3 and 4 perturbs both electron and hole mobilities, yielding a reduction in exciton formation and an increase in the device dark current, thereby decreasing the device efficiency.  相似文献   
85.
Global climate change and the urgency to transform crops require an exhaustive genetic evaluation. The large polyploid genomes of food crops, such as cereals, make it difficult to identify candidate genes with confirmed hereditary. Although genome-wide association studies (GWAS) have been proficient in identifying genetic variants that are associated with complex traits, the resolution of acquired heritability faces several significant bottlenecks such as incomplete detection of structural variants (SV), genetic heterogeneity, and/or locus heterogeneity. Consequently, a biased estimate is generated with respect to agronomically complex traits. The graph pangenomes have resolved this missing heritability and provide significant details in terms of specific loci segregating among individuals and evolving to variations. The graph pangenome approach facilitates crop improvements through genome-linked fast breeding.  相似文献   
86.
Saponins are natural compounds found in plants and have a diverse range of applications. However, the therapeutic potential of saponins in regulating cytotoxicity, angiogenesis, and inflammation in mammalian cells is yet to be explored. Here, we investigated the therapeutic effects of saponins from green tea by exploring the cytotoxic effects of saponins by inducing apoptosis in the human cancer cell lines hepatocellular carcinoma (HEPG2) and colorectal adenocarcinoma (HT29). The anti-angiogenesis effect of saponins was also investigated in human umbilical vein endothelial cells (HUVEC). We explored the ability of saponins to attenuate inflammation in a dose-dependent manner in normal human cells. It was found that saponins exhibit cytotoxic effects in cancer cells and not in normal cells at the same concentration. Cytotoxicity was measured by inducing apoptosis by enhancing caspase-3 (cas-3) activation and B-cell lymphoma-2 (Bcl-2)-associated X protein (BAX) gene expression and suppressing the antiapoptotic protein, Bcl-2. The inhibition of HUVEC proliferation was due to the suppression of the phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), vascular endothelial growth factor receptor-2 (VEGFR-2), and nuclear factor kappa B (NF-κB). We also observed the antioxidant potential of green tea-derived saponins against free radicals in reactive oxygen species (ROS)-induced cells. Here we observed that the saponins exhibited free radical scavenging activities and activated nuclear factorerythroid 2-related factor 2 (NRF-2) leading to the upregulation of antioxidant-related genes in human embryonic kidney 293 (HEK293) cells. Furthermore, we demonstrated that the anti-inflammatory effects were due to the suppression of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) in HEK293 cells. The significance of the work is we are the first to report on the anti-cancer effects of saponins based on the anti-inflammatory, antioxidant, anti-angiogenesis, and apoptosis induction properties. In conclusion, green tea-derived saponins could be effective therapeutics for the treatment of cancer.  相似文献   
87.
88.
When potassium salts such as K2CO3, KOH, CH3COOK, and K2S were added to Mo2C, the promoted catalysts showed high selectivities to alcohols and light olefins in CO hydrogenation at 573 K and 1.0 MPa. However, K2SO4 and KCl caused only slight increase in olefin selectivity with negligible alcohol formation. These two groups of promoters showed different physical and chemical states during the reaction as observed by AES, EDS, EPMA, IR and transient reaction behavior. This difference accounted for the observed difference in selectivity.  相似文献   
89.
90.
An experimental method was developed to study the adsorption and diffusion of the reactant, and the product, reacting on porous catalysts by simultaneoTo study the effect of reaction on the effective diffusivity, supporting experiments were performed to obtain precise adsorption and diffusion characteThree types of zeolite catalysts, LiY, NaY, both active and KY, inactive, were prepared and were used to catalyze the isomerization reaction of cycloprEquilibrium adsorption constants and diffusivities measured under nonreactive conditions were comparable to values found in literature. For inactive caTherefore the use of effective diffusivity value obtained in nonreactive condition to estimate effectiveness factor may give significantly erroneous re  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号