首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1155篇
  免费   29篇
  国内免费   1篇
电工技术   4篇
综合类   2篇
化学工业   99篇
金属工艺   16篇
机械仪表   35篇
建筑科学   4篇
矿业工程   2篇
能源动力   13篇
轻工业   25篇
水利工程   1篇
石油天然气   1篇
无线电   107篇
一般工业技术   82篇
冶金工业   740篇
原子能技术   7篇
自动化技术   47篇
  2023年   6篇
  2022年   5篇
  2021年   8篇
  2020年   9篇
  2019年   10篇
  2018年   17篇
  2017年   6篇
  2016年   23篇
  2015年   14篇
  2014年   17篇
  2013年   20篇
  2012年   27篇
  2011年   39篇
  2010年   19篇
  2009年   28篇
  2008年   24篇
  2007年   23篇
  2006年   20篇
  2005年   14篇
  2004年   15篇
  2003年   16篇
  2002年   13篇
  2001年   14篇
  2000年   10篇
  1999年   36篇
  1998年   223篇
  1997年   125篇
  1996年   75篇
  1995年   37篇
  1994年   49篇
  1993年   35篇
  1992年   9篇
  1991年   11篇
  1990年   8篇
  1989年   14篇
  1988年   15篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1983年   6篇
  1982年   2篇
  1981年   6篇
  1980年   16篇
  1979年   2篇
  1978年   5篇
  1977年   29篇
  1976年   67篇
  1975年   2篇
  1966年   1篇
  1955年   1篇
排序方式: 共有1185条查询结果,搜索用时 15 毫秒
201.
Amine-functionalized SBA-15 materials were synthesized by a post synthesis method. Surface area and pore size decreased by attaching functional groups to the pore surface. Furthermore, pore volume was reduced with functionalization. The carbon and nitrogen content gradually increased with the number of amine groups in the silane precursors. Among the amine-functionalized SBA-15 materials, the SBA-15/TMSPDETA showed the highest removal activity given its high reactivity with formaldehyde.  相似文献   
202.
We report Q-factor enhancement in a one-dimensional (1D) photonic crystal (PC) cavity by embedding electromagnetic-induced-transparency (EIT) planar plasmonic metamaterials in the cavity. Microwave experiments show tenfold Q-factor enhancements, confirming the numerical simulations. More importantly, the Q-factor enhancement is mainly due to both the longitudinal and lateral confinements contributed by the 1D PC cavity and the planar EIT metamaterials, respectively. The combined PC-EIT structure with a prominent cavity figure of merit may find new applications in nonlinear optics, cavity quantum electrodynamics, and low-threshold lasers.  相似文献   
203.
204.
We report on the SSTR2-binding properties of a series of four dimeric [Tyr3]octreotate analogues with different spacer lengths (nine, 19, 41, and 57 atoms) between the peptides. Two analogues (9 and 57 atoms) were selected as precursors for the design, synthesis, and biological evaluation of DOTA-conjugated dimeric [Tyr3]octreotate analogues for tumor targeting. These compounds were synthesized by using a two-stage click ligation procedure: a Cu(I) -catalyzed 1,3-dipolar cycloaddition ("copper-click" reaction) and a thio acid/sulfonyl azide amidation ("sulfo-click" reaction). The IC(50) values of these DOTA-conjugated [Tyr3]octreotate analogues were comparable, and internalization studies showed that the nine-atom (111) In-DOTA-labeled [Tyr3]octreotate dimer had rapid and high receptor binding. Biodistribution studies with BALB/c nude mice bearing subcutaneous AR42J tumors showed that the (111) In-labeled [Tyr3]octreotate dimer (nine atoms) had a high tumor uptake at 1 h p.i. (38.8 ± 8.3 % ID g(-1) ), and excellent tumor retention at 4 h p.i. (40.9 ± 2.5 % ID g(-1) ). However, the introduction of the extended hydrophilic 57 atoms spacer led to rapid clearance from the circulation; this limited tumor accumulation of the radiotracer (21.4 ± 4.9 % ID g(-1) at 1 h p.i.). These findings provide important insight on dimerization and spacer effects on the in vivo properties of DOTA-conjugated [Tyr3]octreotate dimers.  相似文献   
205.
Poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) nanofibers were prepared by the electrospinning method and used as polymer electrolytes in dye-sensitized solar cells (DSSCs). The electrolyte uptake and ionic conductivity of electrospun PVDF-HFP nanofibers with different diameters changed significantly, regardless of the nanofiber thickness. The PVDF-HFP nanofibers prepared from a 15 wt% spinning solution showed high ionic conductivity (1.295 S/cm) and electrolyte uptake (947 %). DSSCs based on the 15 wt% PVDF-HFP nanofiber electrolyte showed an electron transit time of 6.34 × 10?3 s, electronic recombination time of 5.88 × 10?2 s, and conversion efficiency of 3.13 %. Thus, we concluded that the electrospun PVDF-HFP nanofibers can be used as polymer electrolytes in flexible DSSCs as well.  相似文献   
206.
207.
Organic/inorganic composite membranes were prepared using two different polymers. BPO4 particles were introduced into polymers via an in situ sol–gel process. Pre-/post-sulfonated polymers were used to prepare composite membranes as matrix. Pre-sulfonated poly(aryl ether ketone) (SPAEK-6F) copolymer was synthesized via nucleophilic aromatic substitution. Degree of sulfonation was adjusted by the percentage of sulfonated monomer. Post-sulfonated poly(ether ether ketone) (SPEEK) was prepared using concentrated sulfuric acid as sulfonation agent. The membranes were characterized in terms of the ion-exchange capacity (IEC), proton conductivity, water uptake, AFM, SEM and their thermal properties. The SPAEK-6F plain membranes showed higher proton conductivity than that of the SPEEK plain membranes at similar water uptake or IEC due to their structural difference. SEM images of the composite membranes showed that the BPO4 particles were homogenously dispersed in the polymer matrices and BPO4 particle size was greatly influenced by polymer matrix. The SPAEK-6F/BPO4 composite membranes had much smaller BPO4 particle size than the SPEEK/BPO4 composite membranes due to well dispersion of BPO4 sol-like particulates in SPAEK-6F polymer solutions forming more hydrophobic/hydrophilic nanophase than SPEEK polymer solutions. The latter containing a few micrometer-scale BPO4 particles showed higher proton conductivity than the former containing hundreds nanometer-scale BPO4 particles at similar water uptake due to the increase in freezable water and effect of particle size.  相似文献   
208.
Vessel surface reconstruction with a tubular deformable model   总被引:4,自引:0,他引:4  
Three-dimensional (3-D) angiographic methods are gaining acceptance for evaluation of atherosclerotic disease. However, measurement of vessel stenosis from 3-D angiographic methods can be problematic due to limited image resolution and contrast. We present a method for reconstructing vessel surfaces from 3-D angiographic methods that allows for objective measurement of vessel stenosis. The method is a deformable model that employs a tubular coordinate system. Vertex merging is incorporated into the coordinate system to maintain even vertex spacing and to avoid problems of self-intersection of the surface. The deformable model was evaluated on clinical magnetic resonance (MR) images of the carotid (n=6) and renal (n=2) arteries, on an MR image of a physical vascular phantom and on a digital vascular phantom. Only one gross error occurred for all clinical images. All reconstructed surfaces had a realistic, smooth appearance. For all segments of the physical vascular phantom, vessel radii from the surface reconstruction had an error of less than 0.2 of the average voxel dimension. Variability of manual initialization of the deformable model had negligible effect on the measurement of the degree of stenosis of the digital vascular phantom  相似文献   
209.
Abnormal loading generated by blast or impact may cause local damage in a building that may evolve to affect the whole structural system. Therefore, structures have to be designed to prevent such disproportional consequences. Connection is an important contributor to ductility and robustness of the structural steel systems in mitigating such consequences. The aim of this study was to derive a better understanding of how steel connections behave under high-speed loads by means of characterizing their resistance, ultimate strength, and ductility in the form of load–impulse diagrams. The established high-strain-rate resistance properties were applied into simplified frame analyses. The accuracy and cost-effectiveness of the approach were then evaluated comparing the results from detailed and simplified models.  相似文献   
210.
This paper presents a rigorous formulation of the spectral-domain dyadic Green's functions for planar stratified bianisotropic media. The media may consist of any number of layers bounded by optional impedance/admittance walls. Both electric and magnetic dyadic Green's functions for arbitrary field and source locations are derived simultaneously. Based on the principle of scattering superposition, these dyadics are decomposed into unbounded and scattered parts. The scattered dyadic Green's functions are determined without cumbersome operations using the concepts of effective reflection and transmission of outward-bounded and inward-bounded waves. The scattering coefficient matrices are expressed in compact and convenient forms involving global reflection and transmission matrices. Corresponding to the impedance/admittance boundary walls, the global reflection matrices are related directly to the wall impedance/admittance dyadics. For illustration, the general expressions of dyadic Green's functions are applied to the configuration of a grounded bianisotropic slab embedded in isotropic halfspace  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号