首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4410篇
  免费   83篇
  国内免费   2篇
电工技术   7篇
综合类   5篇
化学工业   332篇
金属工艺   58篇
机械仪表   68篇
建筑科学   18篇
能源动力   68篇
轻工业   150篇
水利工程   3篇
石油天然气   4篇
无线电   198篇
一般工业技术   335篇
冶金工业   3066篇
原子能技术   5篇
自动化技术   178篇
  2024年   4篇
  2023年   18篇
  2022年   26篇
  2021年   47篇
  2020年   34篇
  2019年   29篇
  2018年   37篇
  2017年   46篇
  2016年   41篇
  2015年   39篇
  2014年   70篇
  2013年   81篇
  2012年   82篇
  2011年   125篇
  2010年   94篇
  2009年   87篇
  2008年   83篇
  2007年   69篇
  2006年   52篇
  2005年   56篇
  2004年   49篇
  2003年   61篇
  2002年   38篇
  2001年   39篇
  2000年   20篇
  1999年   113篇
  1998年   912篇
  1997年   513篇
  1996年   329篇
  1995年   188篇
  1994年   160篇
  1993年   183篇
  1992年   35篇
  1991年   43篇
  1990年   42篇
  1989年   47篇
  1988年   56篇
  1987年   57篇
  1986年   36篇
  1985年   35篇
  1983年   11篇
  1982年   14篇
  1981年   21篇
  1980年   38篇
  1979年   4篇
  1978年   12篇
  1977年   93篇
  1976年   216篇
  1975年   7篇
  1955年   1篇
排序方式: 共有4495条查询结果,搜索用时 19 毫秒
41.
The negative capacitance (NC) effect, recently discovered in a fluorite-based ferroelectric thin film, has attracted great attention as a rescue to overcome the scaling limitations of the conventional memory and logic devices of highly integrated circuits. The NC effect manifesting an S-shaped polarization–voltage (P–V) curve is initially interpreted by a 1-dimensional Landau Ginzburg Devonshire (LGD) model. However, a series of recent studies have found that this effect can also be explained by the inhomogeneous stray field energy (ISE) model. In this study, by extending the ISE model in the ferroelectric (FE)-dielectric (DE) layered structure, an analytical model that considers the influence of the interfacial screening charge distribution is presented. This model showed that the NC effect in the FE-DE heterostructure can be manifested in various forms other than a single S-shaped P–V curve. In particular, a double S-shaped P–V curve is expected from the fully compensated anti-parallel domain structure, confirmed experimentally in the actual Al2O3/(Hf0.5Zr0.5)O2/Al2O3 triple-layer structure. Furthermore, to reveal the origin of the double S-shaped P–V curve, a multidomain LGD model is presented. It is confirmed that this phenomenon is attributed to the evolution of inhomogeneous stray field energy.  相似文献   
42.
A quadruple data rate (QDR) synchronous DRAM (SDRAM) interface processing data at 500 Mb/s/pin with a 125-MHz external clock signal is presented. Since the QDR interface has a narrower data timing window, a precise skew control on data signals is required. A salient skew cancellation technique with a shared skew estimator is proposed. The skew cancellation circuit not only reduces the data signal skews on a printed circuit board down to 250 ps, but also aligns the data signals with an external clock signal. The entire interface, fabricated in a 0.35-μm CMOS technology, includes a high-speed data pattern generator and consumes 570 mW of power at 3.0-V supply. The active die area of the chip with the on-chip data pattern generator is 2.4 mm2  相似文献   
43.
In this paper, the bis‐condensed 4‐(dicyanomethylene)‐2‐methyl‐6‐[p‐(dimethylamino)styryl]‐4H‐pyran ( DCM) derivatives are introduced as a new class of red dye for organic light‐emitting devices (OLEDs). They showed more red‐shifted emission than the mono‐substituted DCM derivatives and the emission maxima increased as the electron‐donating ability of the aromatic donor group increased. On the basis of these results, red light‐emitting devices were fabricated with bis‐condensed DCM derivatives as red dopants. For a device of configuration ITO/TPD/Alq3 + DADB (5.2 wt.‐%)/Alq3/Al (where ITO is indium tin oxide, TPD is N,N′‐diphenyl‐N,N′‐bis(3‐methylphenyl)‐1,1′‐biphenyl‐4,4′‐diamine, Alq3 is tris(8‐hydroxyquinoline) aluminum, and DADB is [2,6‐bis[2‐[5‐(dibutylamino)phenyl]vinyl]‐4H‐pyran‐4‐ylidene]propanedinitrile), pure red emission was observed with Commission Internationale de l’Eclairage (CIE 1931) coordinates of (0.658, 0.337) at 25 mA/cm2.  相似文献   
44.
By using Ni0‐mediated polymerization, we have systematically synthesized a series of fluorene‐based copolymers composed of blue‐, green‐, and red‐light‐emitting comonomers with a view to producing polymers with white‐light emission. 2,7‐Dibromo‐9,9‐dihexylfluorene, {4‐(2‐[2,5‐dibromo‐4‐{2‐(4‐diphenylamino‐phenyl)‐vinyl}‐phenyl]‐vinyl)‐phenyl}‐diphenylamine (DTPA), and 2‐{2‐(2‐[4‐{bis(4‐bromo‐phenyl)amino}‐phenyl]‐vinyl)‐6‐tert‐butyl‐pyran‐4‐ylidene}‐malononitrile (TPDCM) were used as the blue‐, green‐, and red‐light‐emitting comonomers, respectively. It was found that the emission spectra of the resulting copolymers could easily be tuned by varying their DTPA and TPDCM content. Thus with the appropriate red/green/blue (RGB) unit ratio, we were able to obtain white‐light emission from these copolymers. A white‐light‐emitting diode using the polyfluorene copolymer containing 3 % green‐emitting DTPA and 2 % red‐emitting TPDCM (PG3R2) with a structure of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonic acid)/PG3R2/Ca/Al was found to exhibit a maximum brightness of 820 cd m–2 at 11 V with Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.35), which are close to the standard CIE coordinates for white‐light emission (0.33,0.33).  相似文献   
45.
Most doping research into transition metal dichalcogenides (TMDs) has been mainly focused on the improvement of electronic device performance. Here, the effect of self‐assembled monolayer (SAM)‐based doping on the performance of WSe2‐ and MoS2‐based transistors and photodetectors is investigated. The achieved doping concentrations are ≈1.4 × 1011 for octadecyltrichlorosilane (OTS) p‐doping and ≈1011 for aminopropyltriethoxysilane (APTES) n‐doping (nondegenerate). Using this SAM doping technique, the field‐effect mobility is increased from 32.58 to 168.9 cm2 V?1 s in OTS/WSe2 transistors and from 28.75 to 142.2 cm2 V?1 s in APTES/MoS2 transistors. For the photodetectors, the responsivity is improved by a factor of ≈28.2 (from 517.2 to 1.45 × 104 A W?1) in the OTS/WSe2 devices and by a factor of ≈26.4 (from 219 to 5.75 × 103 A W?1) in the APTES/MoS2 devices. The enhanced photoresponsivity values are much higher than that of the previously reported TMD photodetectors. The detectivity enhancement is ≈26.6‐fold in the OTS/WSe2 devices and ≈24.5‐fold in the APTES/MoS2 devices and is caused by the increased photocurrent and maintained dark current after doping. The optoelectronic performance is also investigated with different optical powers and the air‐exposure times. This doping study performed on TMD devices will play a significant role for optimizing the performance of future TMD‐based electronic/optoelectronic applications.  相似文献   
46.
Shim  S.I. Kim  S.-I. Kim  Y.T. Park  J.H. 《Electronics letters》2004,40(22):1397-1398
Verification was sought for the memory operation of a single transistor type ferroelectric random access memory (1T type FeRAM) with a circuit model for a memory cell transistor combined with a precharged capacitive decoupling sensing scheme. The wiring scheme of the 1T type FeRAM array was also proposed based on the operation of the fabricated memory cell transistor. As a result, the memory operation of 1T type FeRAM was confirmed at a low current level with high sensing speed and no reference cell, and the design and verification of the full chip were achieved.  相似文献   
47.
A data reuse algorithm for multiple reference frame motion estimation is described. The proposed algorithm reduces memory access by modifying the reference frame search order and search centre such that the likelihood of data reuse is increased. Experimental results show that the algorithm reduces memory access by 15-30% compared to the conventional fast reference frame selection algorithm, while maintaining similar bit rate and PSNR  相似文献   
48.
49.
In this study, organic light‐emitting diodes (OLEDs) with enhanced optical properties are fabricated by inserting a nanosized stripe auxiliary electrode layer (nSAEL) between the substrate and an indium tin oxide (ITO) layer. This design can avoid the shortcomings of conventional microsized layers while maintaining high optical uniformity due to the improved conductivity of the electrode. The primary advantage is that the nSAEL (submicrometer scale) is no longer visible to the naked eye. Moreover, the reflective shuttered (grating) structure of the nSAEL increases the forward‐directed light by the microcavity (MC) effect and minimizes the loss of light by the extracting the surface plasmon polariton (SPP) mode. In this study, the degree of the MC and SPP can be controlled with the parameters of the nSAEL by simply conjugating the conditions of laser interference lithography (LIL). Therefore, the current and power efficiencies of the device with an nSAEL with optimized parameters are 1.17 and 1.23 times higher than the reference device at 1000 cd/m2, respectively, and at these parameters, the overall sheet resistance is reduced to less than half (48%). All of the processes are verified by comparing the computational simulation results and the experimental results obtained with the actual fabricated device.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号