首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2450篇
  免费   89篇
  国内免费   5篇
电工技术   17篇
综合类   3篇
化学工业   219篇
金属工艺   43篇
机械仪表   100篇
建筑科学   20篇
能源动力   60篇
轻工业   123篇
水利工程   2篇
石油天然气   2篇
无线电   217篇
一般工业技术   237篇
冶金工业   1345篇
原子能技术   10篇
自动化技术   146篇
  2023年   24篇
  2022年   17篇
  2021年   31篇
  2020年   30篇
  2019年   36篇
  2018年   35篇
  2017年   31篇
  2016年   39篇
  2015年   41篇
  2014年   69篇
  2013年   97篇
  2012年   80篇
  2011年   93篇
  2010年   76篇
  2009年   84篇
  2008年   67篇
  2007年   48篇
  2006年   46篇
  2005年   41篇
  2004年   35篇
  2003年   33篇
  2002年   30篇
  2001年   30篇
  2000年   16篇
  1999年   50篇
  1998年   449篇
  1997年   224篇
  1996年   166篇
  1995年   82篇
  1994年   64篇
  1993年   100篇
  1992年   13篇
  1991年   17篇
  1990年   13篇
  1989年   14篇
  1988年   18篇
  1987年   21篇
  1986年   25篇
  1985年   19篇
  1983年   2篇
  1982年   8篇
  1981年   4篇
  1980年   11篇
  1978年   6篇
  1977年   27篇
  1976年   74篇
  1975年   3篇
  1974年   2篇
  1964年   1篇
  1958年   1篇
排序方式: 共有2544条查询结果,搜索用时 265 毫秒
61.
The maximum entropy principle (MEP) is used to generate a natural probability distribution among the many possible that have the same moment conditions. The MEP can accommodate higher order moment information and therefore facilitate a higher quality PDF model. The performance of the MEP for PDF estimation is studied by using more than four moments. For the case with four moments, the results are compared with those by the Pearson system. It is observed that as accommodating higher order moment, the estimated PDF converges to the original one. A sensitivity analysis formulation of the failure probability based on the MEP is derived for reliability-based design optimization (RBDO) and the accuracy is compared with that by finite difference method (FDM). Two RBDO examples including a realistic three-dimensional wing design are solved by using the derived sensitivity formula and the MEP-based moment method. The results are compared with other methods such as TR-SQP, FAMM + Pearson system, FFMM + Pearson system in terms of accuracy and efficiency. It is also shown that an improvement in the accuracy by including more moment terms can increase numerical efficiency of optimization for the three-dimensional wing design. The moment method equipped with the MEP is found flexible and well adoptable for reliability analysis and design.  相似文献   
62.
Transections of the chicken spinal cord after the developmental onset of myelination at embryonic day (E) 13 results in little or no functional regeneration. However, intraspinal injection of serum complement proteins with complement-binding GalC or 04 antibodies between E9-E12 results in a delay of the onset of myelination until E17. A subsequent transection of the spinal cord as late as E15 (i.e., during the normal restrictive period for repair) results in neuroanatomical regeneration and functional recovery. Utilizing a similar immunological protocol, we evoked a transient alteration of myelin structure in the posthatching (P) chicken spinal cord, characterized by widespread "unravelling" of myelin sheaths and a loss of MBP immunoreactivity (myelin disruption). Myelin repair began within 7 d of cessation of the myelin disruption protocol. Long term disruption of thoracic spinal cord myelin was initiated after a P2-P10 thoracic transection and maintained for > 14 d by intra-spinal infusion of serum complement proteins plus complement-binding GalC or 04 antibodies. Fourteen to 28 d later, retrograde tract tracing experiments, including double-labeling protocols, indicated that approximately 6-19% of the brainstem-spinal projections had regenerated across the transection site to lumbar levels. Even though voluntary locomotion was not observed after recovery, focal electrical stimulation of identified brainstem locomotor regions evoked peripheral nerve activity in paralyzed preparations, as well as leg muscle activity patterns typical of stepping in unparalyzed animals. This indicated that a transient alteration of myelin structure in the injured adult avian spinal cord facilitated brainstem-spinal axonal regrowth resulting in functional synaptogenesis with target neurons.  相似文献   
63.
Contemporary attackers, mainly motivated by financial gain, consistently devise sophisticated penetration techniques to access important information or data. The growing use of Internet of Things (IoT) technology in the contemporary convergence environment to connect to corporate networks and cloud-based applications only worsens this situation, as it facilitates multiple new attack vectors to emerge effortlessly. As such, existing intrusion detection systems suffer from performance degradation mainly because of insufficient considerations and poorly modeled detection systems. To address this problem, we designed a blended threat detection approach, considering the possible impact and dimensionality of new attack surfaces due to the aforementioned convergence. We collectively refer to the convergence of different technology sectors as the internet of blended environment. The proposed approach encompasses an ensemble of heterogeneous probabilistic autoencoders that leverage the corresponding advantages of a convolutional variational autoencoder and long short-term memory variational autoencoder. An extensive experimental analysis conducted on the TON_IoT dataset demonstrated 96.02% detection accuracy. Furthermore, performance of the proposed approach was compared with various single model (autoencoder)-based network intrusion detection approaches: autoencoder, variational autoencoder, convolutional variational autoencoder, and long short-term memory variational autoencoder. The proposed model outperformed all compared models, demonstrating F1-score improvements of 4.99%, 2.25%, 1.92%, and 3.69%, respectively.  相似文献   
64.
Nanofluidic resistive pulse sensing (RPS) has been extensively used to measure the size, concentration, and surface charge of nanoparticles in electrically conducting solutions. Although various methods have been explored for improving detection performances, intrinsic problems including the extremely low particle‐to‐pore volume ratio (<0.01%) and fast nanoparticle translocation (10–1000 µs) still induce difficulties in detection, such as low signal magnitudes and short translocation times. Herein, we present an aqueous two‐phase system (ATPS) in a nanofluidic RPS for amplifying translocation signals and decreasing translocation speeds simultaneously. Two immiscible aqueous liquids build a liquid‐liquid interface inside nanopores. As particles translocate from a high‐affinity liquid phase into a lower‐affinity one, the high‐affinity liquid forms a conformal coating on the particles, which increases the effective particle size and amplifies the current‐blockage signal. The translocation time is also increased, as the ATPS interface impedes the particle translocation. For 20 nm particles, 7.92‐fold and 5.82‐fold enhancements of signal magnitude and translocation time can be achieved. To our knowledge, this is the first attempt to improve nanofluidic RPS by treating an interface of solution reservoirs for manipulating target particles rather than nanopores. This direct particle manipulation allows us to solve the two intrinsic problems all at once.  相似文献   
65.
66.
This study focuses on the applicability of single-atom Mo-doped graphitic carbon nitride (GCN) nanosheets which are specifically engineered with high surface area (exfoliated GCN),  NH2 rich edges, and maximum utilization of isolated atomic Mo for propylene carbonate (PC) production through CO2 cycloaddition of propylene oxide (PO). Various operational parameters are optimized, for example, temperature (130 °C), pressure (20 bar), catalyst (Mo2GCN), and catalyst mass (0.1 g). Under optimal conditions, 2% Mo-doped GCN (Mo2GCN) has the highest catalytic performance, especially the turnover frequency (TOF) obtained, 36.4 h−1 is higher than most reported studies. DFT simulations prove the catalytic performance of Mo2GCN significantly decreases the activation energy barrier for PO ring-opening from 50–60 to 4.903 kcal mol−1. Coexistence of Lewis acid/base group improves the CO2 cycloaddition performance by the formation of coordination bond between electron-deficient Mo atom with O atom of PO, while  NH2 surface group disrupts the stability of CO2 bond by donating electrons into its low-level empty orbital. Steady-state process simulation of the industrial-scale consumes 4.4 ton h−1 of CO2 with PC production of 10.2 ton h−1. Techno-economic assessment profit from Mo2GCN is estimated to be 60.39 million USD year−1 at a catalyst loss rate of 0.01 wt% h−1.  相似文献   
67.
Tobacco mosaic virus (TMV) derivatives that encode movement protein (MP) as a fusion to the green fluorescent protein (MP:GFP) were used in combination with antibody staining to identify host cell components to which MP and replicase accumulate in cells of infected Nicotiana benthamiana leaves and in infected BY-2 protoplasts. MP:GFP and replicase colocalized to the endoplasmic reticulum (ER; especially the cortical ER) and were present in large, irregularly shaped, ER-derived structures that may represent "viral factories." The ER-derived structures required an intact cytoskeleton, and microtubules appeared to redistribute MP:GFP from these sites during late stages of infection. In leaves, MP:GFP accumulated in plasmodesmata, whereas in protoplasts, the MP:GFP was targeted to distinct, punctate sites near the plasma membrane. Treating protoplasts with cytochalasin D and brefeldin A at the time of inoculation prevented the accumulation of MP:GFP at these sites. It is proposed that the punctate sites anchor the cortical ER to plasma membrane and are related to sites at which plasmodesmata form in walled cells. Hairlike structures containing MP:GFP appeared on the surface of some of the infected protoplasts and are reminiscent of similar structures induced by other plant viruses. We present a model that postulates the role of the ER and cytoskeleton in targeting the MP and viral ribonucleoprotein from sites of virus synthesis to the plasmodesmata through which infection is spread.  相似文献   
68.
The immunity protein of colicin E7 (ImmE7) can bind specifically to the DNase-type colicin E7 and inhibit its bactericidal activity. Here we report the 1.8-angstrom crystal structure of the ImmE7 protein. This is the first x-ray structure determined in the superfamily of colicin immunity proteins. The ImmE7 protein consists of four antiparallel alpha-helices, folded in a topology similar to the architecture of a four-helix bundle structure. A region rich in acidic residues is identified. This negatively charged area has the greatest variability within the family of DNase-type immunity proteins; thus, it seems likely that this area is involved in specific binding to colicin. Based on structural, genetic, and kinetic data, we suggest that all the DNase-type immunity proteins, as well as colicins, share a "homologous-structural framework" and that specific interaction between a colicin and its cognate immunity protein relies upon how well these two proteins' charged residues match on the interaction surface, thus leading to specific immunity of the colicin.  相似文献   
69.
Damping characteristics of a musical bell plays an important role in characterizing the musical sound. The total damping consists of acoustical damping and internal damping. Acoustical damping depends upon resonating frequencies and vibration patterns while internal damping is a material property. The acoustical damping of a vibrating structure is formulated via boundary element method and finite element method using eigenmode decomposition. The design sensitivity of acoustical damping is derived using an adjoint variable method of the eigenvalue problem. Design optimization of a musical bell is then performed in terms of acoustical parameters. The goal of the optimization problem is to design a harmonically tuned bell with given acoustical damping values. The proposed automated design process integrates finite element analysis, boundary element analysis, design sensitivity analysis, mode-tracking algorithm and optimization module, seamlessly. It is demonstrated by numerical examples to show practical applications.  相似文献   
70.
Abstract— To understand the mechanism of the disclination defect of the liquid‐crystal (LC) phase, this study was conducted to directly analyze the polymer‐network (PN) structure of polymer‐stabilized blue phase (PSBP), which is minutely formed on all LC layers. The PN was examined after first removing the glass decap and then the LC. Important to note is that the removal of the glass decap did not affect or damage the PN structure. The PN was determined to be a stable structure without any change to the thickness of the layer. When removing the LC, both hexane and acetone solutions were used. Moreover, there was no structural deformation to the PN when using the hexane solution. The results of the study show that the actual size of the polymer chain is in fact 50–60 nm, five times larger than previous theories which estimated the size to be only 10 nm. In addition, this study confirmed that the pores between the PN are 100–200 nm. The PN structure was shown to be susceptible to change based on different heating temperatures. In summation, now that defect lines of a LC display (LCD) could be directly measured, further progress and development in the theoretical interpretations of the Kerr effect on PSBP can be realized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号