首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15310篇
  免费   1265篇
  国内免费   599篇
电工技术   850篇
技术理论   2篇
综合类   871篇
化学工业   2690篇
金属工艺   948篇
机械仪表   962篇
建筑科学   1146篇
矿业工程   536篇
能源动力   446篇
轻工业   880篇
水利工程   241篇
石油天然气   1197篇
武器工业   103篇
无线电   1678篇
一般工业技术   1890篇
冶金工业   837篇
原子能技术   149篇
自动化技术   1748篇
  2024年   78篇
  2023年   298篇
  2022年   473篇
  2021年   658篇
  2020年   519篇
  2019年   448篇
  2018年   511篇
  2017年   515篇
  2016年   440篇
  2015年   601篇
  2014年   778篇
  2013年   835篇
  2012年   948篇
  2011年   1005篇
  2010年   890篇
  2009年   870篇
  2008年   899篇
  2007年   763篇
  2006年   793篇
  2005年   656篇
  2004年   529篇
  2003年   435篇
  2002年   426篇
  2001年   361篇
  2000年   341篇
  1999年   399篇
  1998年   293篇
  1997年   277篇
  1996年   239篇
  1995年   212篇
  1994年   171篇
  1993年   119篇
  1992年   103篇
  1991年   65篇
  1990年   62篇
  1989年   45篇
  1988年   28篇
  1987年   25篇
  1986年   15篇
  1985年   12篇
  1984年   13篇
  1983年   5篇
  1982年   5篇
  1981年   7篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Multipath transport provides higher usable bandwidth for a session. It has also been shown to provide load balancing and error resilience for end-to-end multimedia sessions. Two key issues in the use of multiple paths are 1) how to minimize the end-to-end delay, which now includes the delay along the paths and the resequencing delay at the receiver, and 2) how to select paths. This paper presents an analytical framework for the optimal partitioning of real-time multimedia traffic that minimizes the total end-to-end delay. Specifically, it formulates optimal traffic partitioning as a constrained optimization problem using deterministic network calculus and derives its closed-form solution. Compared with previous work, the proposed scheme is simpler to implement and enforce. This analysis also greatly simplifies the solution to the path selection problem as compared to previous efforts. Analytical results show that for a given flow and a set of paths, a minimal subset can be chosen to achieve the minimum end-to-end delay with O(N) time, where N is the number of available paths. The selected path set is optimal in the sense that adding any rejected path to the set will only increase the end-to-end delay.  相似文献   
992.
可扩展性是当今路由系统面临的最主要的问题之一;学术界一致认为位置与标识分离的思想是解决路由可扩展性问题的最有效的方法;然而,在位置与标识分离的网络中,如何设计一个高效的映射服务系统仍是一个难题;文中提出了影响映射服务系统性能的三个主要因素,并基于对这三个主要因素的分析,提出了一个网络状态感知的标识映射系统NAMS; NAMS包含两个关键元素:网络感知Agent和服务节点;我们认为,NAMS是解决高效映射服务系统设计实现问题的有效途径.  相似文献   
993.
In this paper, we consider the problem of designing optimal asynchronous wake-up schedules to facilitate distributed power management and neighbor discovery in multihop wireless networks. We first formulate it as a block design problem and derive the fundamental trade-offs between wake-up latency and the average duty cycle of a node. After the theoretical foundation is laid, we then devise a neighbor discovery and schedule bookkeeping protocol that can operate on the optimal wake-up schedule derived. To demonstrate the usefulness of asynchronous wake-up, we investigate the efficiency of neighbor discovery and the application of on-demand power management, which overlays a desirable communication schedule over the wake-up schedule mandated by the asynchronous wake-up mechanism. Simulation studies demonstrate that the proposed asynchronous wake-up protocol has short discovery time which scales with the density of the network; it can accommodate various traffic characteristics and loads to achieve an energy savings that can be as high as 70 percent, while the packet delivery ratio is comparable to that without power management.  相似文献   
994.
New fibrous ceramics with polycrystalline mullite fibers as the matrix and silica–boron sols as the high temperature binder, which was inspired by the bird's nest structure in nature, were synthesized. The most important structure characteristic of this fibrous material is that the silica–boron binder only fixed the fibers at the crossing points rather than filled the pores among the fibers. The elastic behavior was investigated, both at room temperature and elevated temperature. Compared to conventional ceramic matrix composites, the samples show a much higher degree of elasticity because of the bending of the fibers. The rebound resilience decreased slowly with the increase of the temperature, but it still remained 86% of that at ambient temperature at 1000 °C. The sample exhibits good elasticity performance, relatively high strength (2.25 MPa) and high porosity (83%) indicating it is a potential high-temperature seal material.  相似文献   
995.
996.
Microstructural evolution and densification behavior of porous kaolin-based mullite ceramic added with MoO3 were investigated. The results indicated that MoO3 addition not only lowered the secondary mullitization temperature to below 950?°C, but also facilitated effectively the anisotropic growth of mullite grains. Fine mullite whiskers grew and interlocked with one another in the pre-existing pore regions, in-situ forming a stiff 3D skeleton structure of mullite whiskers, which arrested further densification of the sample. On the other hand, due to the great capillary attraction of small pores, the liquid phase tended to spread over small grains, which favored the growth from small mullite grains into whiskers at the expense of the liquid phase. Consequently, competitive mechanisms of sintering and crystal growth of mullite functioned, which further limited the sample densification. As a result, the total linear shrinkage of the sample added with MoO3 after firing at 1400?°C was only ??2.75%, and its porosity was retained at as high as 67%.  相似文献   
997.
Mitomycin C is one of the most effective chemotherapeutic agents for a wide spectrum of cancers, but its clinical use is still hindered by the mitomycin C (MMC) delivery systems. In this study, the MMC-loaded polymer-lipid hybrid nanoparticles (NPs) were prepared by a single-step assembly (ACS Nano 2012, 6:4955 to 4965) of MMC-soybean phosphatidyhlcholine (SPC) complex (Mol. Pharmaceutics 2013, 10:90 to 101) and biodegradable polylactic acid (PLA) polymers for intravenous MMC delivery. The advantage of the MMC-SPC complex on the polymer-lipid hybrid NPs was that MMC-SPC was used as a structural element to offer the integrity of the hybrid NPs, served as a drug preparation to increase the effectiveness and safety and control the release of MMC, and acted as an emulsifier to facilitate and stabilize the formation. Compared to the PLA NPs/MMC, the PLA NPs/MMC-SPC showed a significant accumulation of MMC in the nuclei as the action site of MMC. The PLA NPs/MMC-SPC also exhibited a significantly higher anticancer effect compared to the PLA NPs/MMC or free MMC injection in vitro and in vivo. These results suggested that the MMC-loaded polymer-lipid hybrid NPs might be useful and efficient drug delivery systems for widening the therapeutic window of MMC and bringing the clinical use of MMC one step closer to reality.  相似文献   
998.
A versatile, low-temperature, and low-cost chemical conversion synthesis has been developed to prepare copper sulfide (Cu2S) nanotubes. The successful chemical conversion from ZnS nanotubes to Cu2S ones profits by the large difference in solubility between ZnS and Cu2S. The morphology, structure, and composition of the yielded products have been examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction measurements. We have further successfully employed the obtained Cu2S nanotubes as counter electrodes in dye-sensitized solar cells. The light-to-electricity conversion results show that the Cu2S nanostructures exhibit high photovoltaic conversion efficiency due to the increased surface area and the good electrocatalytical activity of Cu2S. The present chemical route provides a simple way to synthesize Cu2S nanotubes with a high surface area for nanodevice applications.  相似文献   
999.
1000.
High-density magnesia was fabricated using vacuum compaction molding, and effects of forming pressure and sintering temperature on bulk density, apparent porosity, diameter shrinkage ratio, volume shrinkage ratio, pore size distribution, cold compressive strength, and thermal shock resistance of the magnesia samples were investigated. There were two ranges of pore distribution in samples that were formed via conventional compaction molding, and these ranges were about 350–2058 nm and 6037–60527 nm. It was considered that the range of larger pores mainly influenced the densification of magnesia. Using vacuum compaction molding, large size pores were removed, and high-density magnesia (with a density greater than 3.40 g cm?3) was easily prepared when forming pressure was higher than 200 MPa and sintering temperature was higher than 1600 °C. Magnesia samples prepared via vacuum compaction molding showed better performance compared to that of samples prepared via conventional compaction molding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号