首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   8篇
化学工业   13篇
建筑科学   1篇
无线电   4篇
一般工业技术   26篇
冶金工业   8篇
自动化技术   1篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2015年   5篇
  2013年   1篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2001年   2篇
  2000年   5篇
  1999年   1篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
21.
Amad MH  Houk RS 《Analytical chemistry》1998,70(23):4885-4889
The peak shape narrows and the resolution improves if the ions are simply reflected back and forth through a conventional quadrupole mass analyzer. CO(+) and N(2)(+) at m/z = 28 are separated to 50% valley with half of the original signal remaining. These two ions can be resolved to baseline (m/Δm) = 5000 with 1% of the original signal remaining.  相似文献   
22.
Antibody 1E9 is a protein catalyst for the Diels-Alder reaction between tetrachlorothiophene dioxide and N-ethylmaleimide. Quantum mechanical calculations have been employed to study the 1E9-catalyzed Diels-Alder reaction in the gas phase. The transition states and intermediates were all determined at the B3LYP/6-31G*//HF/6-31G* level. The cycloaddition step is predicted to be rate-determining, and the endo reaction pathway is strongly favored. Binding of the reactants and the transition states to antibody 1E9 was investigated by docking and molecular dynamics simulations. The linear interaction energy (LIE) method was adopted to estimate the free energy barrier of the 1E9-catalyzed Diels-Alder reaction. The catalytic efficiency of antibody 1E9 is achieved by enthalpic stabilization of the transition state, near-perfect shape complementarity of the hydrophobic binding site for the transition state, and a strategically placed hydrogen-bonding interaction.  相似文献   
23.
24.
25.
26.
A neural network model based on the anatomy and physiology of the cerebellum is presented that can generate both simple and complex predictive pursuit, while also responding in a feedback mode to visual perturbations from an ongoing trajectory. The model allows the prediction of complex movements by adding two features that are not present in other pursuit models: an array of inputs distributed over a range of physiologically justified delays, and a novel, biologically plausible learning rule that generated changes in synaptic strengths in response to retinal slip errors that arrive after long delays. To directly test the model, its output was compared with the behavior of monkeys tracking the same trajectories. There was a close correspondence between model and monkey performance. Complex target trajectories were created by summing two or three sinusoidal components of different frequencies along horizontal and/or vertical axes. Both the model and the monkeys were able to track these complex sum-of-sines trajectories with small phase delays that averaged 8 and 20 ms in magnitude, respectively. Both the model and the monkeys showed a consistent relationship between the high- and low-frequency components of pursuit: high-frequency components were tracked with small phase lags, whereas low-frequency components were tracked with phase leads. The model was also trained to track targets moving along a circular trajectory with infrequent right-angle perturbations that moved the target along a circle meridian. Before the perturbation, the model tracked the target with very small phase differences that averaged 5 ms. After the perturbation, the model overshot the target while continuing along the expected nonperturbed circular trajectory for 80 ms, before it moved toward the new perturbed trajectory. Monkeys showed similar behaviors with an average phase difference of 3 ms during circular pursuit, followed by a perturbation response after 90 ms. In both cases, the delays required to process visual information were much longer than delays associated with nonperturbed circular and sum-of-sines pursuit. This suggests that both the model and the eye make short-term predictions about future events to compensate for visual feedback delays in receiving information about the direction of a target moving along a changing trajectory. In addition, both the eye and the model can adjust to abrupt changes in target direction on the basis of visual feedback, but do so after significant processing delays.  相似文献   
27.
Supported Pt, Pd, and Au catalysts were evaluated in the aqueous-phase oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) at 295 K and high pH in a semibatch reactor. The intermediate reaction product 5-hydroxymethyl-2-furancarboxylic acid (HFCA) was formed in high yield over Au/C and Au/TiO2 at 690 kPa O2, 0.15 M HMF and 0.3 M NaOH, but did not continue to react substantially to FDCA at the specified O2 pressure and base concentration. In contrast, the final reaction product FDCA was formed over Pt/C and Pd/C under identical conditions. The initial turnover frequency of HMF conversion was an order of magnitude greater on Au catalysts compared to either Pt or Pd. Increasing the O2 pressure and NaOH concentration facilitated the conversion of HFCA to FDCA over the supported Au. The significant influence of base concentration on the product distribution indicates an important role of OH in the activation, oxidation and degradation of HMF.  相似文献   
28.
29.
Heterogeneous catalysis is one of the most important processes in the petroleum and the chemical industries. To be able to screen catalysts at high throughput will dramatically improve performance and reduce costs. Here we used laser-induced fluorescence imaging as a high-throughput screening technique in the combinatorial discovery of active catalysts for naphthalene oxidation. Binary catalysts of V-Mo-O, V-Sn-O, V-Ti-O, and V-W-O in various 15-member libraries were screened. Laser ablation ICPMS was employed to confirm the composition of the individual catalysts in the combinatorial library. The addition of MoO3, WO3, SnO2, and TiO2 to V2O5 did not improve the catalytic activity in the conversion of naphthalene to naphthoquinone, but the overall activity was found to increase for certain binary samples. The screening of ternary catalysts of V-Sn-Mo-O revealed that the combination of V (45%)-Sn (45%)-Mo (10%) gave 70% higher catalytic activity than pure V2O5 in converting naphthalene to naphthoquinone. Reaction temperature and sample preparation effects on the activity and selectivity of catalysts are also studied in a combinatorial manner.  相似文献   
30.
Pneumatically assisted electrospray mass spectrometry (ES-MS) is used in the negative ion mode for aqueous metal (M) solutions in an excess of hydrochloric or nitric acid, where the major anion X = Cl- or NO3-. A collision energy of approximately 20 eV removes anion-solvent clusters for most elements and leaves negative complex ions of the general form (Mn+Xn+1)-. Complexation with anions prevents charge reduction reactions at least to n = 3, even in cases where the third ionization energy of M greatly exceeds the first ionization energy of the solvent. These negative ions thus preserve the charge state of the metal cation from the solution and allow identification of both cations and anions in a single set of electrospray conditions. Cations such as Fe3+ or Cu2+ that have a lower oxidation state in solution produce a distribution of negative ions, each with a single negative charge overall; e.g., an Fe3+ solution produces both Fe(III)X4- and Fe(III)X3-. This distribution of FeIII and FeII species is attributed to electrochemical reduction of Fe3+ at the negatively charged ES needle. "Native" anions such as perrhenate or molybdate produce singly charged analogues such as ReO4- or HMoO4-. Metal-EDTA complexes are seen as M(III)Y- or M(II)HY-. The sensitivity for these "native" anions is suppressed by competition with the excess chloride or nitrate used to produce the metal-containing complex ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号