首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   583篇
  免费   13篇
  国内免费   1篇
电工技术   3篇
综合类   1篇
化学工业   62篇
金属工艺   6篇
机械仪表   7篇
建筑科学   5篇
能源动力   18篇
轻工业   14篇
水利工程   1篇
石油天然气   4篇
无线电   38篇
一般工业技术   57篇
冶金工业   334篇
原子能技术   20篇
自动化技术   27篇
  2023年   3篇
  2021年   6篇
  2020年   4篇
  2019年   6篇
  2018年   6篇
  2017年   8篇
  2016年   6篇
  2015年   9篇
  2014年   6篇
  2013年   12篇
  2012年   9篇
  2011年   11篇
  2010年   7篇
  2009年   8篇
  2008年   16篇
  2007年   8篇
  2006年   8篇
  2005年   8篇
  2004年   5篇
  2003年   7篇
  2002年   7篇
  2001年   5篇
  1999年   12篇
  1998年   116篇
  1997年   51篇
  1996年   40篇
  1995年   30篇
  1994年   25篇
  1993年   22篇
  1992年   3篇
  1991年   14篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1986年   4篇
  1985年   4篇
  1983年   4篇
  1982年   5篇
  1981年   5篇
  1980年   10篇
  1979年   6篇
  1978年   6篇
  1977年   9篇
  1976年   28篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
  1972年   4篇
  1970年   2篇
  1967年   1篇
排序方式: 共有597条查询结果,搜索用时 10 毫秒
11.
Integrated perovskite/organic bulk heterojunction (BHJ) solar cells have the potential to enhance the efficiency of perovskite solar cells by a simple one‐step deposition of an organic BHJ blend photoactive layer on top of the perovskite absorber. It is found that inverted structure integrated solar cells show significantly increased short‐circuit current (Jsc) gained from the complementary absorption of the organic BHJ layer compared to the reference perovskite‐only devices. However, this increase in Jsc is not directly reflected as an increase in power conversion efficiency of the devices due to a loss of fill factor. Herein, the origin of this efficiency loss is investigated. It is found that a significant energetic barrier (≈250 meV) exists at the perovskite/organic BHJ interface. This interfacial barrier prevents efficient transport of photogenerated charge carriers (holes) from the BHJ layer to the perovskite layer, leading to charge accumulation at the perovskite/BHJ interface. Such accumulation is found to cause undesirable recombination of charge carriers, lowering surface photovoltage of the photoactive layers and device efficiency via fill factor loss. The results highlight a critical role of the interfacial energetics in such integrated cells and provide useful guidelines for photoactive materials (both perovskite and organic semiconductors) required for high‐performance devices.  相似文献   
12.
In this paper, a practical non‐linear equalizer with iterative distortion cancellation in a satellite receiver is studied. Assuming no prior satellite channel knowledge, distortion estimation and cancellation are performed at the receiver by means of a memory polynomial model used for channel estimation. A data packet transmission scenario over a single‐carrier satellite transponder is simulated, using the not‐linearized amplifier and onboard filter characteristics similar to the direct‐to‐home broadcast DVB‐S2X reference scenario. Varying the memory depth and the non‐linear order of the memory polynomial model trained in the receiver, we compared the packet‐error rate performance of the practical non‐linear equalizer to the standard fractionally spaced linear adaptive equalizer, as well as to an implementation of the non‐linear equalizer with ideal channel knowledge at the receiver. The improved receiver demonstrates superior performance as compared with the standard linear equalizer with up to 5.48‐dB energy efficiency gain for 64‐amplitude and phase‐shift keying for a practical memory polynomial set‐up, and it approaches consistently the packet‐error rate performance of the implementation with ideal channel knowledge when increasing the memory depth and the non‐linear order. Furthermore, it enables the use of high‐order modulation up to 256‐amplitude and phase‐shift keying in the studied scenario, improving significantly the spectral efficiency of the air interface.  相似文献   
13.
By measuring the ramp voltage I–V characteristics, we obtained the oxide trap density and capture cross-section for (O2 + HCl) dry oxidized samples in the temperature range 900–1100°C. It was found that the oxide trap density increases with an increase in the oxidation temperature. The activation energy of oxide trap incorporation is of the order of 4 eV. The capture cross-section determined for the oxide traps is of the order of 10−14 cm2.  相似文献   
14.
Polyethylene (PE) was modified and prepared as double-layer polyethylene/polycaprolactone (PE/PCL) film. Magnetite and casein were added to the PCL-coating film to improve barrier properties and prevent destruction of basic structure of primary polymer PE. Significant improvements were observed with regards to mechanical (tensile strength, elongation at break) and thermal properties, while barrier (O2 permeability) properties were slightly improved. Overall migration values into acetic acid were lower (from 1 to 4.6 mg/dm2) than the upper limit set by the legislation. Specific migration of iron in PE/PCL-Fe samples is also below (µg/L) specific migration limit value set by the legislation (mg/kg).  相似文献   
15.
The mechanism of compact Ag-film formation by electrolysis from nitrate solution with addition of small amounts of phosphate ions is elucidated. It is shown that the phosphate ions exert their effect by lowering the exchange current density. Consequently, the radii of nucleation exclusion zones also diminishes, thus producing conditions stimulating electrodeposition of continuous thin Ag-film.  相似文献   
16.
W-modified HMS and SBA-15 mesoporous materials (Si/W molar ratio equal to 40) were synthesized using sodium tungstate as tungsten source. In order to prepare NiW catalysts these mesoporous materials were impregnated with an aqueous solution of nickel salt of 12-tungstophosphoric acid Ni3/2PW12O40. The synthesized W-HMS, W-SBA-15 materials and NiW catalysts have been characterized by SBET, XRD, UV–Vis DRS, FT-IR, TPD of NH3, 29Si MAS NMR, SEM and HRTEM. The influence of these particular supports on catalytic activity of NiW catalysts was studied in the reaction of hydrodesulfurization (HDS) of thiophene. The results from the FT-IR and UV–Vis DR spectroscopy confirm incorporation of W into the HMS and SBA-15 structures. Additionally 29Si MAS NMR measurements revealed relatively stronger effect of W ion incorporation in HMS structure on degree of silica cross-linking as compared to the effect of W ion incorporation in SBA-15 structure. The catalytic study showed that both W-HMS and W-SBA-15 materials modified with W are good supports for NiW catalysts in the HDS reaction of thiophene. The catalysts show lower selectivity for butanes than a reference NiW/γ-Al2O3 catalyst leveling of about 10% for chosen experimental conditions.  相似文献   
17.
A series of six poly(ethoxytriethyleneglycol acrylate) (PETEGA) homopolymers were synthesized by atom transfer radical polymerization, reversible addition-fragmentation transfer polymerization, and anionic polymerization in order to cover a molecular weight range from 7,000 to 40,000 Da. The polymers exhibited a lower critical solution temperature (LCST) behavior in water, which was observed by the occurrence of a cloud point (CP) at around 35 °C. The transmittance of visible light versus temperature dependence overlapped during the cooling and the heating cycles, showing almost a complete lack of hysteresis. Moreover, instead of the occurrence of an uncontrolled macroscopic phase separation, stable colloidal aggregates (mesoglobules) of narrow distribution in particle size were formed in water at temperatures above the LCST of PETEGA at 1 g L−1 solutions. The dimensions of the mesoglobules ranged from 91 to 235 nm, and particle size was not influenced by the molecular weight of PETEGA. Temperature changes caused considerable variations of the mesoglobules dimensions, which were smaller at higher temperatures. The addition of an anionic surfactant simultaneously increased the CP values by 4–6 °C and lowered the dimensions of the mesoglobules.  相似文献   
18.
19.
The kinetics of enthalpy relaxation (recovery) at the glass transition in x K2O·(20− x )MgO·80TeO2 glasses has been examined from heat capacity measurements using differential scanning calorimetry to clarify the features of the structural relaxation in ternary TeO2-based glasses. Ternary glasses such as 10K2O·10MgO·80TeO2 show high thermal resistance against crystallization compared with binary glasses. The degree of fragility m estimated from the activation energy for viscous flow E η and the glass transition temperature T g is m = 55–62, indicating a fragile character in TeO2-based glasses. Large heat capacity changes of 43.1–48.2 J·mol−1·K−1 are also observed at the glass transition. The activation energy for enthalpy relaxation Δ H is evaluated from the cooling rate dependence of the limiting fictive temperature, and values of Δ H = 897–1268 kJ·mol−1 are obtained. Negative deviation from additivity in Δ H is also observed. Values of the Kovacs–Aklonis–Huchinson–Ramos (KAHR) parameter θ estimated from Δ H and T g are 0.33–0.42 K−1. It has been proposed that ternary glasses have more homogeneous and constrained glass structure compared with binary glasses.  相似文献   
20.
A novel electrically conductive composite for NTC thermistor and piezoresistive sensor was successfully fabricated by homogeneously dispersing conductive SiC and B4C in an insulating natural rubber (NR) matrix. The morphology of the composites was investigated by means of scanning electron microscopy, cross linking density (n), volume fraction of rubber (Vr), and interparticle distance among conductive phases (rp). The influence of the filler concentrations on the mechanical properties such as modulus of elasticity (E); hardness shore A (H), and elongation at break (EB) were studied in details. The dependences of volume resistivity of NR based composites filled with B4C and SiC as a function of fillers concentration was investigated. Temperature dependencies of volume resistivity were also measured to examine the possible application of the composites to polymer linear negative temperature (NTC) thermistors. Furthermore, the temperature dependencies of dielectric constant of the composites were studied. For practical application, the thermal stability of the composites was examined by means of resistivity temperature and pressure hysteresis cycle. In parallel, the conduction mechanism of conductivity of the composites was interpreted in terms of the computed the activation and hopping energy. The applicability of the composites to piezoresistive sensor was examined too. The good mechanical properties and thermal stability of NR composites behavior can be utilized for fabricating various electronic devices as NTC thermistors and piezoresistive sensor (i.e. transducers in pressure sensors). POLYM. COMPOS., 29:109–118, 2008. © 2007 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号