首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   1篇
化学工业   3篇
轻工业   1篇
一般工业技术   2篇
冶金工业   399篇
原子能技术   2篇
  2016年   1篇
  2015年   1篇
  2004年   2篇
  1999年   7篇
  1998年   119篇
  1997年   65篇
  1996年   47篇
  1995年   30篇
  1994年   21篇
  1993年   27篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1978年   1篇
  1977年   20篇
  1976年   31篇
  1972年   1篇
  1966年   1篇
排序方式: 共有407条查询结果,搜索用时 718 毫秒
101.
102.
103.
In mammalian cells, fusion between early endocytic vesicles has been shown to require the ubiquitous intracellular fusion factors N-ethylmaleimide-sensitive factor (NSF) and alpha-SNAP, as well as a factor specific for early endosomes, the small GTPase Rab5 [1-3]. We have previously demonstrated an additional requirement for phosphatidylinositol 3-kinase (PI 3-kinase) activity [4]. The membrane association of early endosomal antigen 1 (EEA1), a specific marker of early endosomes [5,6], has recently been shown to be similarly dependent on PI 3-kinase activity [7], and we therefore postulated that it might be involved in endosome fusion. Here, we present evidence that EEA1 has an important role in determining the efficiency of endosome fusion in vitro. Both the carboxy-terminal domain of EEA1 (residues 1098-1411) and specific antibodies against EEA1 inhibited endosome fusion when included in an in vitro assay. Furthermore, depletion of EEA1, both from the membrane fraction used in the assay by washing with salt and from the cytosol using an EEA1-specific antibody, resulted in inhibition of endosome fusion. The involvement of EEA1 in endosome fusion accounts for the sensitivity of the endosome fusion assay to inhibitors of PI 3-kinase.  相似文献   
104.
The microsomal ethanol oxidizing system comprises an ethanol-inducible cytochrome P-4502E1, but the involvement of other P-450s has also been suggested. In our study, human CYP2E1, CYP1A2, and CYP3A4 were heterologously expressed in HepG2 cells, and their ethanol oxidation was assessed using a corresponding selective inhibitor: all three P-450 isoenzymes metabolized ethanol. Selective inhibitors-4-methylpyrazole (CYP2E1), furafylline (CYP1A2), and troleandomycin (CYP3A4)-also decreased microsomal ethanol oxidation in the livers of 18 organ donors. The P-450-dependent ethanol oxidizing activities correlated significantly with those of the specific monooxygenases and the immunochemically determined microsomal content of the respective P-450. The mean CYP2E1-dependent ethanol oxidation in human liver microsomes [1.41+/-0.11 nmol min(-1) (mg protein)(-1)] was twice that of CYP1A2 (0.61+/-0.07) or CYP3A4 (0.73+/-0.11) (p < 0.05). Furthermore, CYP2E1 had the highest (p < 0.05) specific activity [28+/-2 nmol min(-1) (nmol CYP2E1)(-1) versus 17+/-3 nmol min(-1) (nmol CYP1A2)(-1), and 12+/-2 nmol min(-1) (CYP3A4)(-1), respectively]. Thus, in human liver microsomes, CYP2E1 plays the major role. However, CYP1A2 and CYP3A4 contribute significantly to microsomal ethanol oxidation and may, therefore, also be involved in the pathogenesis of alcoholic liver disease.  相似文献   
105.
One general signalling mechanism used to transfer the information delivered by agonists into appropriate intracellular compartments involves the rapid redistribution of ionised calcium throughout the cell, which results in transient elevations of the cytosolic free Ca2+ concentration. Various physiological stimuli increase [Ca2+]i transiently and, thereby, induce cellular responses. However, under pathological conditions, changes of [Ca2+]i are generally more pronounced and sustained. Marked elevations of [Ca2+]i activate hydrolytic enzymes, lead to exaggerated energy expenditure, impair energy production, initiate cytoskeletal degradation, and ultimately result in cell death. Such Ca(2+)-induced cytotoxicity may play a major role in several diseases, including neuropathological conditions such as chronic neurodegenerative diseases and acute neuronal losses (e.g. in stroke).  相似文献   
106.
107.
Randomly amplified polymorphic DNA (RAPD) genotyping was applied to one representative strain of each of the 84 electrophoretic types (ETs) of Neisseria meningitidis serogroup A previously defined by multilocus enzyme electrophoresis (MEE) (J.-F. Wang et al., Infect. Immun. 60:5267-5282, 1992). Twenty-seven additional isolates comprising six ETs were also tested. MEE and RAPD genotyping yielded similar dendrograms at the subgroup level. Similar results were obtained by both methods for 18 serogroup A meningococci isolated in The Netherlands between 1989 and 1993. Ten of these isolates defined a new subgroup, designated subgroup IX. One isolate belonged to the ET-5 complex, normally associated with serogroup B strains (D. A. Caugant et al., Proc. Natl. Acad. Sci. USA 83:4927-4931, 1986). By RAPD genotyping, meningococci can be linked to previously characterized genotypes by using a computerized database, and dendrograms based on cluster analyses can easily be generated. RAPD analysis offers advantages over MEE since intermediate numbers of isolates of serogroup A meningococci can quickly be assigned to known subgroups and new subgroups can be defined.  相似文献   
108.
109.
110.
The proteins of the large subunit of rat liver ribosomes were separated into seven groups by stepwise elution from carboxymethylcellulose with LiCl at pH 6.5. Twenty-one proteins (L3, L6, L7', L8, L10, L15, L17, L18, L19, L23', L25, L27', L28, L29, L31, L32, L34, L35, L36, L36', and L37') were isolated from three groups (C60, E60, and F60) by ion exchange chromatography on carboxymethycellulose and by filtration through Sephadex. The amount of protein obtained varied from 0.3 to 25 mg. Nine of the proteins (L6, L8, L18, L27', L28, L29, L34, L36, and L36') had no detectable contamination: the impurities in the others were no greater than 9%. The molecular weight of the proteins was estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; the amino acid composition was determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号