首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   0篇
化学工业   13篇
机械仪表   1篇
能源动力   1篇
轻工业   4篇
石油天然气   3篇
无线电   6篇
一般工业技术   11篇
冶金工业   446篇
自动化技术   4篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   8篇
  1998年   141篇
  1997年   96篇
  1996年   53篇
  1995年   33篇
  1994年   20篇
  1993年   28篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   5篇
  1982年   1篇
  1981年   5篇
  1980年   7篇
  1979年   1篇
  1977年   9篇
  1976年   28篇
  1975年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有489条查询结果,搜索用时 15 毫秒
481.
Recovery metabolism of fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscles of the rat has been investigated using fluorometric monitoring of reduction of nicotinamide adenine dinucleotide (NAD). In both EDL and SOL, groups of twitch contractions produced a decrease in fluorescence (oxidation of NADH) which returned to the resting base line after contraction ceased. These responses proceeded more quickly in EDL than SOL and were abolished by anoxia. A 1-s tetanus of SOL produced an initial reduction which could be abolished with iodoacetate followed by a prolonged oxidation which could be blocked by anoxia. The fluorescence of EDL was decreased immediately following a 1-s tetanus but then rapidly increased well beyond the resting level of reduction and persisted throughout the recovery period. This reduction was largely depressed by iodoacetate. The results indicate marked differences in the recovery metabolism of these muscles, consistent with predominantly mitochondrial oxidative activity in the slow-twitch muscles and predominantly glycolytic activity in the fast-twitch muscles.  相似文献   
482.
483.
The results of an experimental investigation of the molecular thermal conductivity of heavy-water vapor by the method of pulsed heating of a thin wire are presented.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 56, No. 1, pp. 92–97, January, 1989.  相似文献   
484.
485.
486.
487.
488.
The paper addresses optimization of machining conditions in diamond grinding of steel R6M5F3 taking into account the process unsteadiness. The optimization is accomplished for plunge-cut grinding by the elastic mode with a constant workpiece-to-wheel pressing force, the kinematics of the process being similar to the rigid-mode one. The region of possible machining conditions for an early stage of the elastic-mode diamond grinding is considered in the coordinates “workpiece speed—workpiece pressing force”. The workpiece speed is determined for a specified machined surface roughness. The workpiece pressing force is chosen to be minimal based on the condition of ensuring no phase-structural transformations in the surface layer of the workpiece material, no diamond oxidation, and no destruction of diamond grits. The process unsteadiness was allowed for through the use of the equations describing the time variation of the current limited cutting ability of the grinding wheel.  相似文献   
489.
Models and equations describing aspects of diaphragm performance are discussed in view of recent experiences with non-asbestos diaphragms. Excellent control of wettability and, therefore, of the amount of gases inside the diaphragm, together with chemical resistance to the environment during electrolysis, was found to be an essential prerequisite to performances of non-asbestos diaphragms that are comparable to those of asbestos diaphragms. Equations, derived and supported by experimental evidence from previous work, are shown to describe and predict hydrodynamic permeability and ohmic voltage drop of diaphragms, even in cases where the amount of gases inside the diaphragm slowly increases during electrolysis. Current efficiency is observed to be only dependent to a slight extent on the effective electrolyte void fraction inside the diaphragm. Major effects that determine current efficiency at 2 kA m–2 and 120 gl–1 caustic are shown to be diaphragm thickness, pore diameter distribution and the number of interconnections between pores inside the diaphragm. A discussion on design of the structure of non-asbestos diaphragms is presented.Nomenclature B permeability coefficient (m2) - c i,x concentration of ionic species i at position x (mol m–3) - c k concentration of hydroxyl ions in catholyte (mol m–3) - CE current efficiency - d thickness of diaphragm (m) - thickness of layer (m) - D i ionic diffusion coefficient of species i (m2s–1) - D e dispersion coefficient (m2s–1) - electrolyte void fraction - E potential inside diaphragm (V) - F Faraday constant, 96487 (C mol–1 of electrons) - F j,i flux of ionic species i in the stagnant electrolyte inside small pores of layer j - H hydrostatic head (N m–2) - i flux of current =j/F (mol m–2s–1) - j current density (A m–2) - k i,l constant representing diffusion in diaphragm (m2s–1) - k 2 constant representing migration in diaphragm (m–1) - v p hydraulic pore radius according to [15] (m) - N number of layers - N j,i flux of ionic species i in layer j (mol m–2s–1) - P hydrodynamic permeability (m3 N–1s–1) - R gas constant, 8.3143 (J mol–1 K–1) - density of liquid (kg m–3) - R 0 electric resistivity of electrolyte (ohm m) - R d electric resistivity of porous structure filled with electrolyte (ohm m) - R m resistance of the diaphragm (ohm m2) - R a resistance of anolyte layer (ohm m2) - R e resistance of electrodes (ohm m2) - s specific surface of porous structure (m–1) - s 0 standard specific surface of solids in porous structure (m–1) - tortuosity defined according toR d/R 0=/ - T absolute temperature (K) - u superficial liquid velocity (m s–1) - U cell voltage (V) - dynamic viscosity (N s m–2) - v kinematic viscosity (m2s–1) - x diaphragm dimensional coordinate (m) - y radial coordinate inside pores (m) Paper presented at the meeting on Materials Problems and Material Sciences in Electrochemical Engineering Practice organised by the Working Party on Electrochemical Engineering of the European Federation of Chemical Engineers held at Maastricht, The Netherlands, September 17th and 18th 1987.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号