Cloud computing systems handle large volumes of data by using almost unlimited computational resources, while spatial data warehouses (SDWs) are multidimensional databases that store huge volumes of both spatial data and conventional data. Cloud computing environments have been considered adequate to host voluminous databases, process analytical workloads and deliver database as a service, while spatial online analytical processing (spatial OLAP) queries issued over SDWs are intrinsically analytical. However, hosting a SDW in the cloud and processing spatial OLAP queries over such database impose novel obstacles. In this article, we introduce novel concepts as cloud SDW and spatial OLAP as a service, and afterwards detail the design of novel schemas for cloud SDW and spatial OLAP query processing over cloud SDW. Furthermore, we evaluate the performance to process spatial OLAP queries in cloud SDWs using our own query processor aided by a cloud spatial index. Moreover, we describe the cloud spatial bitmap index to improve the performance to process spatial OLAP queries in cloud SDWs, and assess it through an experimental evaluation. Results derived from our experiments revealed that such index was capable to reduce the query response time from 58.20 up to 98.89 %. 相似文献
Summary In this short paper I propose a combination of qualitative and quantitative criteria to classify the quality, talent and creative
thinking of the scientists of the “hard”, medical and biological sciences. The rationale for the proposed classification is
to focus on the impact and overall achievements of each individual scientist and on how he is perceived by his own community.
This new method is probably more complete than any other form of traditional judgment of a scientist's achievements and reputation,
and may be useful for funding agencies, editors of scientific journals, science academies, universities, and research laboratories. 相似文献
Membrane segment 5 (M5) is thought to play a direct role in cation transport by the sarcoplasmic reticulum Ca2+-ATPase and the Na+, K+-ATPase of animal cells. In this study, we have examined M5 of the yeast plasma membrane H+-ATPase by alanine-scanning mutagenesis. Mutant enzymes were expressed behind an inducible heat-shock promoter in yeast secretory vesicles as described previously (Nakamoto, R. K., Rao, R., and Slayman, C. W. (1991) J. Biol. Chem. 266, 7940-7949). Three substitutions (R695A, H701A, and L706A) led to misfolding of the H+-ATPase as evidenced by extreme sensitivity to trypsin; the altered proteins were arrested in biogenesis, and the mutations behaved genetically as dominant lethals. The remaining mutants reached the secretory vesicles in sufficient amounts to be characterized in detail. One of them (Y691A) had no detectable ATPase activity and appeared, based on trypsinolysis in the presence and absence of ligands, to be blocked in the E1-to-E2 step of the reaction cycle. Alanine substitution at an adjacent position (V692A) had substantial ATPase activity (54%), but was likewise affected in the E1-to-E2 step, as evidenced by shifts in its apparent affinity for ATP, H+, and orthovanadate. Among the mutants that were sufficiently active to be assayed for ATP-dependent H+ transport by acridine orange fluorescence quenching, none showed an appreciable defect in the coupling of transport to ATP hydrolysis. The only residue for which the data pointed to a possible role in cation liganding was Ser-699, where removal of the hydroxyl group (S699A and S699C) led to a modest acid shift in the pH dependence of the ATPase. This change was substantially smaller than the 13-30-fold decrease in K+ affinity seen in corresponding mutants of the Na+, K+-ATPase (Arguello, J. M., and Lingrel, J. B (1995) J. Biol. Chem. 270, 22764-22771). Taken together, the results do not give firm evidence for a transport site in M5 of the yeast H+-ATPase, but indicate a critical role for this membrane segment in protein folding and in the conformational changes that accompany the reaction cycle. It is therefore worth noting that the mutationally sensitive residues lie along one face of a putative alpha-helix. 相似文献
It is known that the H-indexes of individuals, research groups, institutions, scientific journals, and countries strongly depend on the field of study, slowly increase with the number of publications, N, and can be described by empirical power-law functions of the type H?=?C?×?Na (C and a are constants and depend on the specific field being analyzed). In this paper, we use this function and propose a new index [Montazerian–Zanotto–Eckert (MZE)], which is normalized by the number of publications and typically varies from ??1 to +?1, to characterize the relative standing of a research group, institution, or author to those of his/her peer groups. Due to the rich statistics available, as an example, here we analyzed and tested the new parameter against the citation-related performance (H-index) of countries. We found that the MZE index readily distinguishes between countries that stand above or below the average (for any given number of publications). Generally, publications of countries with a positive MZE index are more interesting or visible than the average. Analyzing publication output in this manner instead of the H-index allows for a less biased comparison between researchers, journals, universities, or countries for any particular combination of H-index and publication output.