首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   24篇
电工技术   10篇
化学工业   196篇
金属工艺   11篇
机械仪表   12篇
建筑科学   12篇
矿业工程   1篇
能源动力   4篇
轻工业   64篇
石油天然气   4篇
无线电   9篇
一般工业技术   41篇
冶金工业   6篇
原子能技术   1篇
自动化技术   36篇
  2023年   6篇
  2022年   30篇
  2021年   29篇
  2020年   11篇
  2019年   10篇
  2018年   13篇
  2017年   11篇
  2016年   11篇
  2015年   9篇
  2014年   13篇
  2013年   22篇
  2012年   17篇
  2011年   32篇
  2010年   16篇
  2009年   12篇
  2008年   20篇
  2007年   15篇
  2006年   10篇
  2005年   10篇
  2004年   7篇
  2003年   9篇
  2002年   9篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   6篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   5篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1983年   4篇
  1982年   6篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有407条查询结果,搜索用时 31 毫秒
81.
The long lead time required to add new capacity in the electricity generation industry means that daily demands are necessarily served by capacity already installed. However, in a competitive market, even if the installed capacity was designed to serve the projected demands, frequent surpluses and occasional full utilization inevitably lead to price volatility. This paper develops a two-stage model of the generation market in which capacity construction occurs in stage 1, before demand realization, and price determination occurs in stage 2, when the equilibrium price ensures that the realized demand does not exceed the installed capacity. We show that price volatility and price spikes are inevitable, and that while price capping can mitigate high and volatile prices, it causes unmet demands and reduction in system reliability. This paper accentuates the interdependence among generating capacity, price volatility and service reliability, a primary cause of concern in the debate on electricity market reform.  相似文献   
82.
This paper investigates the plastic deformation in mono-crystalline silicon under complex loading conditions. With the aid of various characterization techniques, it was found that the mechanism of plasticity in silicon is complex and depends on loading conditions, involving dislocations, phase transformations and chemical reactions. In general, plastic deformation in silicon is the coupled result of mechanical deformation controlled by the stress field applied, chemical reaction determined by the external loading environment, and mechanical–chemical interaction governed by both the loading type and environment. Temperature rise accelerates the penetration of oxygen into silicon and reduces the critical stress of plastic yielding. When the chemical effect is avoided, the initiation of plasticity is enabled by octahedral shear stress but the further development of plastic deformation is influenced by hydrostatic stress. Plasticity of silicon in the form of phase transformations, e.g., from the diamond to amorphous or from the amorphous to bcc structures, is determined by loading history.  相似文献   
83.
Ultimate aerobic biodegradabilities of an array of sugar ester surfactants were determined by International Standards Organisation method 7827, “Water Quality—Evaluation in an Aqueous Medium of the Aerobic Biodegradability of Organic Compounds, Method by Dissolved Organic Carbon” (1984). The surfactants were nonionic sugar esters with different-sized sugar head groups (formed from glucose, sucrose, or raffinose) and different lengths and numbers of alkyl chains [formed from lauric (C12) or palmitic (C16) acid]. Analogous anionic sugar ester surfactants, formed by attaching an α-sulfonyl group adjacent to the ester bond, and sugar esters with α-alkyl substituents were also studied. It was found that variations in sugar head group size or in alkyl chain length and number do not significantly affect biodegradability. In contrast, the biodegradation rate of sugar esters with α-sulfonyl or α-alkyl groups, although sufficient for them to be classified as readily biodegradable, was dramatically reduced compared to that of the unsubstituted sugar esters. An understanding of the relationship between structure and biodegradability provided by the results of this study will aid the targeted design of readily biodegradable sugar ester surfactants for use in consumer products.  相似文献   
84.
Cereal-based confectionery products being consumed through whole human life are considered mainly to be a source of carbohydrates, that is energy, although cereals are a rich source of minerals as well. To evaluate some hard biscuits produced in Croatia as a source of different trace elements in nutrition, in this study Zn and Cu contents were determined in classic wheat flour biscuits and in dietetic biscuits enriched with whole wheat grain flour or whole wheat grain grits, soya flour and skimmed milk. Zn was determined by flame atomic absorption spectrometry (AAS); Cu was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results show that the Zn content in different kinds of biscuits ranges from 5.89 up to 17.64 mg/kg and the Cu content ranges from 1.15 up to 2.79 mg/kg depending on the type of wheat milling products and mineral content of other ingredients used. Enriched dietetic biscuits produced from wheat flour type 850 and whole wheat grain flour and/or soya flour and skimmed milk were almost 200% and 150% higher in Zn and Cu, respectively, in comparison to classic white wheat flour biscuits and can be considered as good sources of Zn and Cu in nutrition.  相似文献   
85.
The food flavour additive octanoic acid (C8:0) is also a metabolite of the entomopathogenic fungus Conidiobolus coronatus, which efficiently infects and rapidly kills Galleria mellonella. GC-MS analysis confirmed the presence of C8:0 in insecticidal fraction FR3 extracted from C. coronatus filtrate. Topical administration of C8:0 had a dose-dependent effect on survival rates of larvae but not on pupation or adult eclosion times of the survivors. Topically applied C8:0 was more toxic to adults than larvae (LD100 for adults 18.33 ± 2.49 vs. 33.56 ± 2.57 µg/mg of body mass for larvae). The administration of C8:0 on the cuticle of larvae and adults, in amounts corresponding to their LD50 and LD100 doses, had a considerable impact on the two main defense systems engaged in protecting against pathogens, causing serious changes in the developmental-stage-specific profiles of free fatty acids (FFAs) covering the cuticle of larvae and adults and damaging larval hemocytes. In vitro cultures of G. mellonella hemocytes, either directly treated with C8:0 or taken from C8:0 treated larvae, revealed deformation of hemocytes, disordered networking, late apoptosis, and necrosis, as well as caspase 1–9 activation and elevation of 8-OHdG level. C8:0 was also confirmed to have a cytotoxic effect on the SF-9 insect cell line, as determined by WST-1 and LDH tests.  相似文献   
86.
Oxidative stress is an essential factor in the development and progression of Alzheimer’s disease (AD). An excessive amount of reactive oxygen species (ROS) induces the peroxidation of lipid membranes, reduces the activity of antioxidant enzymes and causes neurotoxicity. In this study, we investigated the antioxidant and cholinesterase inhibitory potential of a novel galantamine–curcumin hybrid, named 4b, administered orally in two doses (2.5 mg/kg and 5 mg/kg) in scopolamine (SC)-induced neurotoxicity in mice. To evaluate the effects of 4b, we used galantamine (GAL) (3 mg/kg) and curcumin (CCN) (25 mg/kg) as positive controls. Ex vivo experiments on mouse brains showed that the higher dose of 4b (5 mg/kg) increased reduced glutathione (GSH) levels by 46%, catalase (CAT) and superoxide dismutase (SOD) activity by 57%, and glutathione peroxidase (GPx) activity by 108%, compared with the SC-treated group. At the same time, 4b (5 mg/kg) significantly reduced the brain malondialdehyde (MDA) level by 31% and acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities by 40% and 30%, respectively, relative to the SC-impaired group. The results showed that 4b acted as an antioxidant agent and brain protector, making it promising for further experimental research in the field of neurodegenerative diseases.  相似文献   
87.
The uptake and distribution of doxorubicin in the MCF7 line of breast-cancer cells were monitored by Raman measurements. It was demonstrated that bioavailability of doxorubicin can be significantly enhanced by applying Congo red. To understand the mechanism of doxorubicin delivery by Congo red supramolecular carriers, additional monolayer measurements and molecular dynamics simulations on model membranes were undertaken. Acting as molecular scissors, Congo red particles cut doxorubicin aggregates and incorporated them into small-sized Congo red clusters. The mixed doxorubicin/Congo red clusters were adsorbed to the hydrophilic part of the model membrane. Such behavior promoted transfer through the membrane.  相似文献   
88.
The amyloid structures and their wild type forms, available in the PDB database, provide the basis for comparative analyses. Globular proteins are characterised by a 3D spatial structure, while a chain in any amyloid fibril has a 2D structure. Another difference lies in the structuring of the hydrogen bond network. Amyloid forms theoretically engage all the NH and C=O groups of the peptide bonds in a chain with two hydrogen bonds each. In addition, the hydrogen bond network is highly ordered—as perpendicular to the plane of the chain. The β-structure segments provide the hydrogen bond system with an anti-parallel system. The folds appearing in the rectilinear propagation of the segment with the β-structure are caused by just by one of the residues in the sequence—residues with a Rα-helical or Lα-helical conformation. The antiparallel system of the hydrogen bonds in the β-structure sections at the site of the amino acid with a Rα- or Lα-helical conformation changes into a parallel system locally. This system also ensures that the involvement of the C=O and H-N groups in the construction of the interchain hydrogen bond, while maintaining a perpendicular orientation towards the plane of the chain. Conformational analysis at the level of the Phi and Psi angles indicates the presence of the conditions for the structures observed in the amyloids. The specificity of amyloid structures with the dominant conformation expressed as |Psi| = |Phi| reveals the system of organisation present in amyloid fibrils. The Phi, Psi angles, as present in this particular structure, transformed to form |Psi| = |Phi| appear to be ordered co-linearly. Therefore, the calculation of the correlation coefficient may express the distribution around this idealised localisation on the Ramachandran map. Additionally, when the outstanding points are eliminated, the part of amyloid chain can be classified as fulfilling the defined conditions. In addition, the presentation of the chain structure using geometric parameters, V-angle—the angle between the planes of the adjacent peptide bonds (angle versus the virtual axis Cα-Cα) and the radius of the curvature R, depending on the size of the angle V, allows for a quantitative assessment of changes during amyloid transformation.  相似文献   
89.
CXCL16 is a chemotactic cytokine belonging to the α-chemokine subfamily. It plays a significant role in the progression of cancer, as well as the course of atherosclerosis, renal fibrosis, and non-alcoholic fatty liver disease (NAFLD). Since there has been no review paper discussing the importance of this chemokine in various diseases, we have collected all available knowledge about CXCL16 in this review. In the first part of the paper, we discuss background information about CXCL16 and its receptor, CXCR6. Next, we focus on the importance of CXCL16 in a variety of diseases, with an emphasis on cancer. We discuss the role of CXCL16 in tumor cell proliferation, migration, invasion, and metastasis. Next, we describe the role of CXCL16 in the tumor microenvironment, including involvement in angiogenesis, and its significance in tumor-associated cells (cancer associated fibroblasts (CAF), microglia, tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), mesenchymal stem cells (MSC), myeloid suppressor cells (MDSC), and regulatory T cells (Treg)). Finally, we focus on the antitumor properties of CXCL16, which are mainly caused by natural killer T (NKT) cells. At the end of the article, we summarize the importance of CXCL16 in cancer therapy.  相似文献   
90.
The water environment determines the activity of biological processes. The role of such an environment interpreted in the form of an external field expressed by the 3D Gaussian distribution in the fuzzy oil drop model directs the folding process towards the generation of a centrally located hydrophobic core with the simultaneous exposure of polar residues on the surface. In addition to proteins soluble in the water environment, there is a significant group of membrane proteins that act as receptors or channels, including ion channels in particular. The change of the polar (water) environment into a highly hydrophobic (membrane) environment is quite radical, resulting in a different hydrophobicity distribution within the membrane protein. Modification of the notation of the force field expressing the presence of the hydrophobic environment has been proposed in this work. A modified fuzzy oil drop model with its adaptation to membrane proteins was used to interpret the structure of membrane proteins–mechanosensitive channel. The modified model was also used to describe the so-called negative cases—i.e., for water-soluble proteins with a clear distribution consistent with the fuzzy oil drop model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号