首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   891篇
  免费   9篇
电工技术   1篇
综合类   2篇
化学工业   13篇
金属工艺   4篇
机械仪表   1篇
建筑科学   2篇
矿业工程   1篇
轻工业   83篇
无线电   4篇
一般工业技术   9篇
冶金工业   766篇
自动化技术   14篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   9篇
  2017年   5篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   9篇
  2011年   12篇
  2010年   3篇
  2009年   7篇
  2008年   11篇
  2007年   7篇
  2006年   10篇
  2005年   8篇
  2004年   7篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   23篇
  1998年   201篇
  1997年   111篇
  1996年   83篇
  1995年   53篇
  1994年   44篇
  1993年   47篇
  1992年   12篇
  1991年   12篇
  1990年   16篇
  1989年   14篇
  1988年   18篇
  1987年   16篇
  1986年   10篇
  1985年   8篇
  1983年   2篇
  1982年   8篇
  1981年   8篇
  1980年   9篇
  1979年   1篇
  1978年   3篇
  1977年   11篇
  1976年   55篇
  1975年   6篇
  1974年   1篇
  1955年   1篇
排序方式: 共有900条查询结果,搜索用时 15 毫秒
891.
Fortification of cheesemilk with membrane retentates is often practiced by cheesemakers to increase yield. However, the higher casein (CN) content can alter coagulation characteristics, which may affect cheese yield and quality. The objective of this study was to evaluate the effect of using ultrafiltration (UF) retentates that were processed at low temperatures on the properties of Swiss cheese. Because of the faster clotting observed with fortified milks, we also investigated the effects of altering the coagulation conditions by reducing the renneting temperature (from 32.2 to 28.3°C) and allowing a longer renneting time before cutting (i.e., giving an extra 5 min). Milks with elevated total solids (TS; ∼13.4%) were made by blending whole milk retentates (26.5% TS, 7.7% CN, 11.5% fat) obtained by cold (<7°C) UF with part skim milk (11.4% TS, 2.5% CN, 2.6% fat) to obtain milk with CN:fat ratio of approximately 0.87. Control cheeses were made from part-skim milk (11.5% TS, 2.5% CN, 2.8% fat). Three types of UF fortified cheeses were manufactured by altering the renneting temperature and renneting time: high renneting temperature = 32.2°C (UFHT), low renneting temperature = 28.3°C (UFLT), and a low renneting temperature (28.3°C) plus longer cutting time (+5 min compared to UFLT; UFLTL). Cutting times, as selected by a Wisconsin licensed cheesemaker, were approximately 21, 31, 35, and 32 min for UFHT, UFLT, UFLTL, and control milks, respectively. Storage moduli of gels at cutting were lower for the UFHT and UFLT samples compared with UFLTL or control. Yield stress values of gels from the UF-fortified milks were higher than those of control milks, and decreasing the renneting temperature reduced the yield stress values. Increasing the cutting time for the gels made from the UF-fortified milks resulted in an increase in yield stress values. Yield strain values were significantly lower in gels made from control or UFLTL milks compared with gels made from UFHT or UFLT milks. Cheese composition did not differ except for fat content, which was lower in the control compared with the UF-fortified cheeses. No residual lactose or galactose remained in the cheeses after 2 mo of ripening. Fat recoveries were similar in control, UFHT, and UFLTL but lower in UFLT cheeses. Significantly higher N recoveries were obtained in the UF-fortified cheeses compared with control cheese. Because of higher fat and CN contents, cheese yield was significantly higher in UF-fortified cheeses (∼11.0 to 11.2%) compared with control cheese (∼8.5%). A significant reduction was observed in volume of whey produced from cheese made from UF-fortified milk and in these wheys, the protein was a higher proportion of the solids. During ripening, the pH values and 12% trichloroacetic acid-soluble N levels were similar for all cheeses. No differences were observed in the sensory properties of the cheeses. The use of UF retentates improved cheese yield with no significant effect on ripening or sensory quality. The faster coagulation and gel firming can be decreased by altering the renneting conditions.  相似文献   
892.
Microfiltration (MF) of milk was used to produce casein (CN) concentrates (80% protein) with reduced whey protein levels. By varying temperature of MF, we altered the proportion of β‐CN to αs‐CN in CN concentrates and compared them to milk protein concentrate (MPC). Casein content as a % of protein was approximately 90% for CN concentrates and approximately 80% for MPC. Smaller micelles and weaker rennet gels were observed for CN concentrates with low β‐CN level. Foam stability and yield stress values were higher for CN concentrates with a high β‐CN level. Modified CN concentrates can be produced by altering the proportions of individual CNs.  相似文献   
893.
Rennet-induced gels were made from milk acidified to various pH values or milk at pH 6.0 that had added EDTA. The objective was to examine the effect of removing insoluble Ca (INS Ca) from casein micelles (CM) on rennet gelation properties. For the pH trial, diluted lactic acid was added to reconstituted skim milk to decrease the pH to 6.4, 6.0, 5.8, 5.6, and 5.4. For the EDTA trial, EDTA was slowly added (0, 2, 4, and 6 mM) to reconstituted skim milk, and the final pH values were subsequently adjusted to pH 6.0. Dynamic low amplitude oscillatory rheology was used to monitor gel development. The Ca content of CM and rennet wheys made from these milks was measured using inductively coupled plasma spectroscopy. The INS Ca content of milk was altered by the acidification pH values or level of EDTA added. In all samples, the storage modulus (G′) exhibited a maximum (GM), with a decrease in G′ during longer aging times. Gels made at pH 6.4 had higher GM compared with gels made at pH 6.7 probably due to the reduction in electrostatic repulsion, whereas the INS Ca content only slightly decreased. The highest GM value of gels was observed at pH 6.4 and the GM value decreased with decreasing pH from 6.4 to 5.4. This was due to an excessive loss of INS Ca from CM. There was a decrease in GM with the increase in the concentration of added EDTA, which was probably due to the loss of colloidal calcium phosphate, which weakens the integrity of CM. Loss tangent (LT) values at GM increased with a reduction in milk pH and the addition of EDTA to milk. Rennet gels at the point of the GM were subjected to constant low shearing to fracture the gels. With a reduction in INS Ca content, the yield stress decreased, whereas LT values increased indicating a weaker, more flexible casein network. Microstructure of rennet-induced gels near the GM point and 2 to 10 h after this point was studied using fluorescence microscopy. At GM, gels made from milk acidified to pH 6.4 exhibited more branched, interconnected networks, whereas strands and clusters became larger with a reduction in milk pH to 5.4. Gels made from milk with EDTA added had more finely dispersed protein clusters compared with gels made from milk with no EDTA added. These microscopic observations supported the effect of loss of INS Ca on GM and LT. There was a decrease in apparent interconnectivity between strands in gel microstructure during aging, which agreed with the decrease in G′ after GM. It can be concluded that low levels of solubilization of INS Ca and the decrease in milk pH resulted in an increase in GM. With greater losses of INS Ca there was excessive reduction in cross-linking within CM, which resulted in weaker, more flexible rennet gels. This complex behavior cannot be explained by adhesive hard sphere models for CM or rennet gels made from these CM.  相似文献   
894.
Whey protein concentrate constituents were tested for their ability to reduce naturally occurring pink color defect and pink cooked color induced by sodium nitrite (10 ppm) and nicotinamide (1.0%) in ground turkey. β-lactoglobulin (1.8%), -lactalbumin (0.8%), bovine serum albumin (0.15–0.3%), lactose (1.0–3.0%), potassium chloride (500–1500 ppm), and ferrous iron chloride (0.3–30 ppm) had no effects on cooked pink color. Lactoferrin (30–5000 ppm) increased or decreased pink color depending on its concentration in samples without added sodium nitrite or nicotinamide. Annatto (0.1–1.0 ppm) reduced pink color whereas the higher concentration of magnesium chloride (22–88 ppm) and ferric iron chloride (0.3–30 ppm) increased pink color in samples with added nicotinamide. Calcium chloride (160–480 ppm) was the only tested constituent that consistently reduced pink cooked color in samples with and without added nitrite and nicotinamide. Due to the variability of whey protein concentrates and the number of constituents that do not reduce pink cooked color, the addition of calcium alone or dried milk minerals containing calcium, phosphate, and citrate, represents a better means to regularly prevent the pink color defect in cooked ground turkey.  相似文献   
895.
Over the last 25 yr, cheese production in the United States has more than doubled with most of the increase due to production in the western states. Processing large volumes of milk into cheese has necessitated changes in vat size and design, reliance on computer software, and milk standardization, including use of membrane concentration of milk either at the cheese plant or on the farm. There has been increased interest in specialty cheeses including cheese made from sheep, goat, and organic milks. In addition, membrane processing of whey into various value-added components has become routine. Changes in cheese manufacturing protocols have resulted in a reduction of the manufacturing time and the necessity for consistent and reliable starter activity. Major advances in the genetics of microorganisms have not only resulted in widespread use of fermentation-produced chymosin but also in starter bacteria with improved resistance to bacteriophage infection. Genomics and proteomics have increased the likelihood of the development of nonstarter adjuncts with specific enzymatic activity. Indeed, the use of adjunct microorganisms to produce cheese with a unique flavor profile or to produce cheese with more consistent or better quality flavor has gained almost universal acceptance.  相似文献   
896.
Compositional changes in raw and pasteurized cream and unconcentrated sweet cream buttermilk (SCB) obtained from a local dairy were investigated over 1 yr. Total phospholipid (PL) composition in SCB ranged from 0.113 to 0.153%. Whey protein denaturation in pasteurized cream over 1 yr ranged from 18 to 59%. Pizza cheese was manufactured from milk standardized with condensed SCB (∼34.0% total solids, 9.0% casein, 17.8% lactose). Effects of using condensed SCB on composition, yield, PL recovery, and functional properties of pizza cheese were investigated. Cheesemilks were prepared by adding 0, 2, 4, and 6% (wt/wt) condensed SCB to part-skim milk, and cream was added to obtain cheesemilks with ∼11.2 to 12.7% total solids and casein:fat ratio of ∼1. Use of condensed SCB resulted in a significant increase in cheese moisture. Cheese-making procedures were modified to obtain similar cheese moisture contents. Fat and nitrogen recoveries in SCB cheeses were slightly lower and higher, respectively, than in control cheeses. Phospholipid recovery in cheeses was below 40%. Values of pH and 12% trichloro-acetic acid-soluble nitrogen were similar among all treatments. Cheeses made from milk standardized with SCB showed less melt and stretch than control cheese, especially at the 4 and 6% SCB levels. Addition of SCB significantly lowered free oil at wk 1 but there were no significant differences at wk 2 and 4. Use of SCB did not result in oxidized flavor in unmelted cheeses. At low levels (e.g., 2% SCB), addition of condensed SCB improved cheese yield without affecting compositional, rheological, and sensory properties of cheese.  相似文献   
897.
Colby cheese was made using different manufacturing conditions (i.e., varying the lactose content of milk and pH values at critical steps in the cheesemaking process) to alter the extent of acid development and the insoluble and total Ca contents of cheese. Milk was concentrated by reverse osmosis (RO) to increase the lactose content. Extent of acid development was modified by using high (HPM) and low (LPM) pH values at coagulant addition, whey drainage, and curd milling. Total Ca content was determined by atomic absorption spectroscopy, and the insoluble (INSOL) Ca content of cheese was measured by the cheese juice method. The rheological and melting properties of cheese were measured by small amplitude oscillatory rheometry and UW-Melt Profiler, respectively. There was very little change in pH during ripening even in cheese made from milk with high lactose content. The initial (d 1) cheese pH was in the range of 4.9 to 5.1. The INSOL Ca content of cheese decreased during the first 4 wk of ripening. Cheeses made with the LPM had lower INSOL Ca content during ripening compared with cheese made with HPM. There was an increase in melt and maximum loss tangent values during ripening except for LPM cheeses made with RO-concentrated milk, as this cheese had pH <4.9 and exhibited limited melt. Curd washing reduced the levels of lactic acid produced during ripening and resulted in significantly higher INSOL Ca content. The use of curd washing for cheeses made from high lactose milk prevented a large pH decrease during ripening; high rennet and draining pH values also retained more buffering constituents (i.e., INSOL Ca phosphate), which helped prevent a large pH decrease.  相似文献   
898.
899.
对彩色果蔬面制品的工艺以及护色技术进行了研究。实验表明,以柠檬酸0.05%、D-异抗坏血酸钠0.01%、没食子酸丙酯0.06%、大豆磷脂0.12%、食盐1%作为添加剂在和面时添加进果蔬面制品,然后按照工艺进行加工,可以得到有光泽、美味且营养丰富的果蔬面制品。  相似文献   
900.
提出了一种轮式月球车的避障学习方法。首先列出了BH2月球车的动力学方程,并将避障行为解释为沿子目标点行走的过程。然后在月球车视觉局部范围内进行避障策略学习,选择车体、子目标点和障碍之间的相对位置矢量为学习过程的状态量,使策略学习对环境变化有鲁棒性;选择车轮的转向力矩为控制输入,降低了学习复杂度。实验证明此方法对环境变化有很好的适应能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号