首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3691篇
  免费   208篇
  国内免费   2篇
电工技术   16篇
综合类   1篇
化学工业   759篇
金属工艺   20篇
机械仪表   32篇
建筑科学   150篇
矿业工程   4篇
能源动力   57篇
轻工业   443篇
水利工程   45篇
石油天然气   8篇
无线电   183篇
一般工业技术   602篇
冶金工业   1202篇
原子能技术   1篇
自动化技术   378篇
  2024年   8篇
  2023年   26篇
  2022年   60篇
  2021年   97篇
  2020年   64篇
  2019年   59篇
  2018年   89篇
  2017年   90篇
  2016年   91篇
  2015年   96篇
  2014年   115篇
  2013年   205篇
  2012年   187篇
  2011年   331篇
  2010年   246篇
  2009年   214篇
  2008年   273篇
  2007年   242篇
  2006年   211篇
  2005年   175篇
  2004年   137篇
  2003年   124篇
  2002年   120篇
  2001年   85篇
  2000年   72篇
  1999年   65篇
  1998年   39篇
  1997年   60篇
  1996年   44篇
  1995年   44篇
  1994年   28篇
  1993年   30篇
  1992年   24篇
  1991年   8篇
  1990年   20篇
  1989年   20篇
  1988年   14篇
  1987年   14篇
  1986年   11篇
  1985年   15篇
  1984年   12篇
  1983年   11篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1971年   1篇
排序方式: 共有3901条查询结果,搜索用时 15 毫秒
991.
ABSTRACT: Over one‐half of foodborne illnesses are believed to be viral in origin. The ability of viruses to persist in the environment and foods, coupled with low infectious doses, allows even a small amount of contamination to cause serious problems. An increased incidence of foodborne illnesses and consumer demand for fresh, convenient, and safe foods have prompted research into alternative food‐processing technologies. This review focuses on viral inactivation by both traditional processing technologies such as use of antimicrobial agents and the application of heat, and also novel processing technologies including high‐pressure processing, ultraviolet‐ and gamma‐irradiation, and pulsed electric fields. These industrially applicable control measures will be discussed in relation to the 2 most common causes of foodborne viral illnesses, hepatitis A virus and human noroviruses. Other enteric viruses, including adenoviruses, rotaviruses, aichi virus, and laboratory and industrial viral surrogates such as feline caliciviruses, murine noroviruses, bacteriophage MS2 and ΦX174, and virus‐like particles are also discussed. The basis of each technology, inactivation efficacy, proposed mechanisms of viral inactivation, factors affecting viral inactivation, and applicability to the food industry with a focus on ready‐to‐eat foods, produce, and shellfish, are all featured in this review.  相似文献   
992.
A capillary electrophoresis laser-induced fluorescence (CE-LIF) assay was developed for detection of adenylyl cyclase (AC) activity using BODIPY FL ATP (BATP) as substrate. In the assay, BATP was incubated with AC and the resulting mixture of BATP and enzyme product (BODIPY cyclic AMP, BcAMP) separated in 5 min by CE-LIF. Substrate depletion and product accumulation were simultaneously monitored during the course of the reaction. The rate of product formation depended upon the presence of AC activators forskolin or Galpha(s)-GTPgammaS as evidenced by a more rapid BATP turnover to BcAMP compared to basal levels. The CE-LIF assay detected EC50 values for forskolin and Galpha(s)-GTPgammaS of 27 +/- 6 microM and 317 +/- 56 nM, respectively. These EC50 values compared well to those previously reported using [alpha-32P]ATP as substrate. When AC was concurrently activated with 2.5 microM forskolin and 25 nM Galpha(s)-GTPgammaS, the amount of BcAMP formed was 3.4 times higher than the additive amounts of each activator alone indicating a positively cooperative activation by these compounds in agreement with previous assays using radiolabeled substrate. Inhibition of AC activity was also demonstrated using the AC inhibitor 2'-(or-3')-O-(N-methylanthraniloyl) guanosine 5'-triphosphate with an IC50 of 9 +/- 6 nM. The use of a fluorescent substrate combined with CE separation has enabled development of a rapid and robust method for detection of AC activity that is an attractive alternative to the AC assay using radioactive nucleotide and column chromatography. In addition, the assay has potential for high-throughput screening of drugs that act at AC.  相似文献   
993.
A procedure is described for the preparation of high-performance etched silicon columns for gas chromatography. Rectangular channels, 150 mum wide by 240 mum deep are fabricated in silicon substrates by gas-phase reactive ion etching. A 0.1-0.2-mum-thick film of dimethyl polysiloxane stationary phase is deposited on the channel walls by filling the channel with a dilute solution in 1:1 n-pentane and dichloromethane and pumping away the solvent. A thermally activated cross-linking agent is used for in situ cross-linking. A 3-m-long microfabricated column generated approximately 12 500 theoretical plates at optimal operating conditions using air as carrier gas. A kinetic model for the efficiency of rectangular cross-section columns is used to evaluate column performance. Results indicate an additional source of gas-phase dispersion beyond longitudinal diffusion and nonequilibrium effects, probably resulting from numerous turns in the gas flow path through the channel. The columns are thermally stable to at least 180 degrees C using air carrier gas. Temperature programming is demonstrated for the boiling point range from n-C5 to n-C12. A 3.0-m-long column heated at 10 degrees C/min obtains a peak capacity of over 100 peaks with a resolution of 1.18 and a separation time of approximately 500 s. With a 0.25-m-long column heated at 30 degrees C/min, a peak capacity of 28 peaks is obtained with a separation time of 150 s. Applications are shown for the analysis of air-phase petroleum hydrocarbons and the high-speed analysis of chemical warfare agent and explosive markers.  相似文献   
994.
Imaging mass spectrometry (IMS) that utilizes matrix-assisted laser desorption/ionization (MALDI) technology can provide a molecular ex vivo view of resected organs or whole-body sections from an animal, making possible the label-free tracking of both endogenous and exogenous compounds with spatial resolution and molecular specificity. Drug distribution and, for the first time, individual metabolite distributions within whole-body tissue sections can be detected simultaneously at various time points following drug administration. IMS analysis of tissues from 8 mg/kg olanzapine dosed rats revealed temporal distribution of the drug and metabolites that correlate to previous quantitative whole-body autoradiography studies. Whole-body MALDI IMS is further extended to detecting proteins from organs present in a whole-body sagittal tissue section. This technology will significantly help advance the analysis of novel therapeutics and may provide deeper insight into therapeutic and toxicological processes, revealing at the molecular level the cause of efficacy or side effects often associated with drug administration.  相似文献   
995.
Since the Royal Society Discussion Meeting on H3+ in 2000, the laboratory spectroscopy of H3+ has entered a new regime. For the first time, transitions of H3+ above the barrier to linearity have been observed. A highly sensitive near-infrared spectrometer based on a titanium:sapphire laser and incorporating a dual-beam, double-modulation technique with bidirectional optical multi-passing has been developed in order to detect these transitions, which are more than 4600 times weaker than the fundamental band. We discuss our recent work on the 2v1 + 2v2(2) <-- 0, 3v1 + v2(1) <-- 0, v1 + 4v2(2) <-- 0, v1 + 4V2(4) <-- 0 and 2v1 + 3v2(1) <-- 0 combination bands and the 5v2(1) <-- 0, 5v2(3) <-- 0, 52(5) <-- 0 and 6v2(2) <-- 0 overtone bands. Experimentally determined energy levels provide a critical test of ab initio calculations in this challenging energy regime (greater than 10,000 cm(-1)). By comparing the experimental energy levels and theoretical energy levels from ab initio calculations in which the adiabatic and relativistic corrections are incorporated, the extent of higher-order effects such as non-adiabatic and radiative corrections is revealed.  相似文献   
996.
Hyperthermia can be produced by near-infrared laser irradiation of gold nanoparticles present in tumors and thus induce tumor cell killing via a bystander effect. To be clinically relevant, however, several problems still need to be resolved. In particular, selective delivery and physical targeting of gold nanoparticles to tumor cells are necessary to improve therapeutic selectivity. Considerable progress has been made with respect to retargeting adenoviral vectors for cancer gene therapy. We therefore hypothesized that covalent coupling of gold nanoparticles to retargeted adenoviral vectors would allow selective delivery of the nanoparticles to tumor cells, thus feasibilizing hyperthermia and gene therapy as a combinatorial therapeutic approach. For this, sulfo-N-hydroxysuccinimide labeled gold nanoparticles were reacted to adenoviral vectors encoding a luciferase reporter gene driven by the cytomegalovirus promoter (AdCMVLuc). We herein demonstrate that covalent coupling could be achieved, while retaining virus infectivity and ability to retarget tumor-associated antigens. These results indicate the possibility of using adenoviral vectors as carriers for gold nanoparticles.  相似文献   
997.
Because of their nanometer sizes and molecular recognition capabilities, biological systems have garnered much attention as vehicles for the directed assembly of nanoscale materials.(1-6) One of the greatest challenges of this research has been to successfully interface biological systems with electronic materials, such as semiconductors and metals. As a means to address some of these issues, Sarikaya, Belcher, and others have used a combinatorial technique called phage display(7-9) to discover new families of peptides that showed binding affinities to various substrates. More recently, Zheng and co-workers used combinatorial DNA libraries to isolate short DNA oligomers (30-90 bases) that could disperse single-walled carbon nanotubes (SWCNT) in water.(10) Through a systematic analysis, they found that short oligonucleotides having repeating sequences of gunanines and thymines (dGdT)(n) could wrap in a helical manner around a CNT with periodic pitch.(11) Although helix formation around SWCNTs having regular pitches is an effective method for dispersing and separating CNTs, the need for specific repeating sequences limits use to non-natural DNA that must be synthesized with optimal lengths of less than 150 bases. In contrast, we demonstrate here that long genomic single-stranded DNA (>100 bases) of a completely random sequence of bases can be used to disperse CNTs efficiently through the single-stranded DNA's (ssDNA) ability to form tight helices around the CNTs with distinct periodic pitches. Although this process occurs irrespective of the DNA sequence, we show that this process is highly dependent on the removal of complementary strands. We also demonstrate that although the helix pitch-to-pitch distances remain constant down the length of a single CNT, the distances are variable from one DNA-CNT to another. Finally, we report initial work that shows that methods developed to align long dsDNA can be applied in a similar fashion to produce highly dense arrays of aligned ssDNA-CNT hybrids.  相似文献   
998.
JL Carns  BD Duncan  MP Dierking 《Applied optics》2012,51(24):5850-5862
We investigate the use of a semiconductor optical amplifier operated in the saturation regime as a phase modulator for long range laser radar applications. The nature of the phase and amplitude modulation resulting from a high peak power Gaussian pulse, and the impact this has on the ideal pulse response of a laser radar system, is explored. We also present results of a proof-of-concept laboratory demonstration using phase-modulated pulses to interrogate a stationary target.  相似文献   
999.
In this paper we describe our efforts to develop a sulfur trioxide (SO3) electrolyzer that could lower the temperature of the SO3 decomposition step in the sulfur–iodine and hybrid sulfur thermochemical cycles. The objective is to develop an alternative to the standard process of converting SO3 to SO2, which is thermal decomposition at 830 °C and above. Thermodynamic calculations show that high SO3 conversions can be obtained at 590 °C if oxygen is removed during the SO3 decomposition stage. One way of achieving oxygen removal during SO3 decomposition is electrolysis, if suitable electrode and electrolyte materials can be found. Active oxygen electrode materials are already developed and we have demonstrated suitability of a thin doped-zirconia electrolyte in this study. The main difficulty came in the development of an active and stable SO3 electrode. Using Ga–V–O/NbB2/Au electrodes we demonstrated high catalytic activity, but could not achieve acceptable electrochemical performance.  相似文献   
1000.
We use a simple device architecture based on a poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-coated indium tin oxide anode and a LiF/Al cathode to assess the effects of shell thickness on the properties of light-emitting diodes (LEDs) comprising CdSe/CdS core/shell nanocrystal quantum dots (NQDs) as the emitting layer. Specifically, we are interested in determining whether LEDs based on thick-shell nanocrystals, so-called "giant" NQDs, afford enhanced performance compared to their counterparts incorporating thin-shell systems. We observe significant improvements in device performance as a function of increasing shell thickness. While the turn-on voltage remains approximately constant for all shell thicknesses (from 4 to 16 CdS monolayers), external quantum efficiency and maximum luminance are found to be about one order of magnitude higher for thicker shell nanocrystals (≥13 CdS monolayers) compared to thinner shell structures (<9 CdS monolayers). The thickest-shell nanocrystals (16 monolayers of CdS) afforded an external quantum efficiency and luminance of 0.17% and 2000 Cd/m(2), respectively, with a remarkably low turn-on voltage of ~3.0 V.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号