首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   26篇
  国内免费   5篇
电工技术   3篇
化学工业   52篇
金属工艺   1篇
机械仪表   4篇
建筑科学   16篇
矿业工程   1篇
能源动力   4篇
轻工业   9篇
水利工程   1篇
石油天然气   2篇
无线电   32篇
一般工业技术   52篇
冶金工业   12篇
原子能技术   4篇
自动化技术   57篇
  2023年   7篇
  2022年   6篇
  2021年   9篇
  2020年   9篇
  2019年   10篇
  2018年   7篇
  2017年   7篇
  2016年   9篇
  2015年   9篇
  2014年   14篇
  2013年   22篇
  2012年   12篇
  2011年   12篇
  2010年   14篇
  2009年   11篇
  2008年   13篇
  2007年   13篇
  2006年   3篇
  2005年   4篇
  2004年   9篇
  2003年   3篇
  2002年   7篇
  2001年   3篇
  2000年   6篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有250条查询结果,搜索用时 10 毫秒
181.
An efficient ferroelectric‐enhanced side‐gated single CdS nanowire (NW) ultraviolet (UV) photodetector at room temperature is demonstrated. With the ultrahigh electrostatic field from polarization of ferroelectric polymer, the depletion of the intrinsic carriers in the CdS NW channel is achieved, which significantly reduces the dark current and increases the sensitivity of the UV photodetector even after the gate voltage is removed. Meanwhile, the low frequency noise current power of the device reaches as low as 4.6 × 10?28 A2 at a source‐drain voltage Vds = 1 V. The single CdS NW UV photodetector exhibits high photoconductive gain of 8.6 × 105, responsivity of 2.6 × 105 A W?1, and specific detectivity (D*) of 2.3 × 1016 Jones at a low power density of 0.01 mW cm?2 for λ = 375 nm. In addition, the spatially resolved scanning photocurrent mapping across the device shows strong photocurrent signals near the metal contacts. This is promising for the design of a controllable, high‐performance, and low power consumption ultraviolet photodetector.  相似文献   
182.
Quasi‐1D nanochains of spherical magnetic ferrite particles with a homogeneous particle size of ≈200 nm and a micrometer‐sized chain length are fabricated via a self‐assembly method under an external magnetic field. This assisting magnetic field (Hassist), applied during synthesis, significantly modifies the distribution of the Fe2+Oh, Fe3+Td, and Fe3+Oh cations in the chains, as demonstrated by X‐ray magnetic circular dichroism (XMCD) combined with theoretical analysis. This provides direct evidence of the nontrivial role of external synthetic conditions for defining the crystal chemistry of nanoscale ferrites and in turn their magnetic properties, providing an extra degree of freedom for intentional control over the performances of 1D magnetic nanodevices for various applications. Magnetic imaging, performed via XMCD in photoemission electron microscopy, further shows the possibility of creating and trapping a series of adjacent magnetic domain walls in a single chain, suggesting that there is great application potential for these nanochains in 1D magnetic nanodevices, as determined by field‐ or current‐driven domain wall motions. Practical control over the magnetic properties of the nanochains is also achieved by extrinsic dopants of cobalt and zinc, which are observed to occupy the ferrite ionic sites in a selective manner.  相似文献   
183.
Introducing cerium (Ce) species into electrocatalysts has been recently developed as an effective approach to improve their oxygen evolution reaction (OER) performance. Importantly, the spatial distribution of Ce species in the hosts can determine the availability of Ce species either as additives or as co‐catalysts, which would dictate their different contributions to the enhanced electrocatalytic performance. Herein, the comprehensive investigations on two different catalyst configurations, namely CeO2‐embedded NiO (Ce‐NiO‐E) and CeO2‐surface‐loaded NiO (Ce‐NiO‐L), are performed to understand the effect of their specific spatial arrangements on OER characteristics. The Ce‐NiO‐E catalysts exhibit a smaller overpotential of 382 mV for 10 mA cm?2 and a lower Tafel slope of 118.7 mV dec?1, demonstrating the benefits of the embedded configuration for OER, as compared with those of Ce‐NiO‐L (426 mV and 131.6 mV dec?1) and pure NiO (467 mV and 140.7 mV dec?1), respectively. The improved OER property of Ce‐NiO‐E originates from embedding small‐sized CeO2 clusters into the host for the larger specific surface area, richer surface defects, higher oxygen adsorption capacity, and better optimized electronic structures of the surface active sites, as compared with Ce‐NiO‐L. Above findings provide a valuable guideline for and insight in designing catalysts with different spatial configurations for enhanced catalytic properties.  相似文献   
184.
The dynamic response of magnetic order to optical excitation at sub-picosecond scale has offered an intriguing alternative for magnetism manipulation. Such ultrafast optical manipulation of magnetism has become a fundamental challenging topic with high implications for future spintronics. Here, this study demonstrates such manipulation in Co2FeSi films grown on flexible polyimide substrate, and demonstrates how the magneto-optical interaction can be modified by using strain engineering which in turn triggers the excitation of both dipolar and exchange spin waves modes. Furthermore, Gilbert damping and spin-orbit coupling in Co2FeSi can both be tuned significantly by altering the magnitude and type of applied strain, suggesting an appealing way to manipulate spin wave propagation. These results develop the optical manipulation magnetism into the field of spin wave dynamics, and open a new direction in the application of spin orbitronics and magnonics devices using strain engineering.  相似文献   
185.
186.
Relative radiation effectiveness, RE, of 21 MeV 7Li and 64 MeV 16O ions being completely stopped in a tissue equivalent film dose meter has been measured as a function of penetration depth and energy, and the results have been compared with calculations based on a δ-ray theory for heavy charged particles developed by Katz et al. The experiment was designed to test calculations particularly in the Bragg-peak region of the slowing down particles where significant deviation between theory and experiment was found. Fitting of the characteristic D37 dose and the size of the radiation sensitive element in the detector, which are important parameters in the theoretical model, does not improve the overall correlation between theory and experiment. It is concluded that disagreement between theoretical and experimental RE-values below 1.5 MeV/amu is partly due to lack of equivalence between the δ-ray spectrum and the slowing down spectrum of electrons from low-LET radiation, and partly from approximations in the calculated distribution of energy deposition of the δ-rays.  相似文献   
187.
This research was aimed to present the histological and ultrastructure properties of the adrenal gland in the Persian squirrel. Two male and female animals were included in the study. The adrenal gland was bean-shaped and located on the cranial pole of kidney. The enveloping capsule was dense connective tissue that reacted positively with Periodic-Acid Schiff (PAS) and Masson trichrome stainings. The parenchyma of the gland consisted of two-part, namely cortex and medulla; the cortex had three layers: zona glomerulosa (ZG), zona fasciculata (ZF), and zona reticularis (ZR). The cells of the ZG were mainly spherical and ovoid with circular arrangement and few lipid droplets in TEM micrographs. The cells of the ZF were columnar and spherical that were arranged in cord-like rows. Transmission electron microscopy (TEM) indicated conspicuous lipid droplets and mitochondria in this zone. The cells of the ZR were arranged in a tangled networks and were almost similar to those in the ZF. TEM images showed fewer lipid vesicles in the ZR compared to the ZF and ZG. Chromaffin cells were located in the medulla of the adrenal gland in two layers. TEM images showed that some of them were smaller and contained fewer secretory granules; other cells were larger and contained more electron-dense secretory granules. Immunofluorescence staining showed that steroidogenic factor 1 (SF1) expressed from cortex to the corticomedullary junction (CMJ) and tyrosine hydroxylase (TH) expressed in the medulla. In conclusion, the results indicated both similarities and differences between the adrenal gland of the Persian squirrel and other animals such as mammals and rodents.  相似文献   
188.
The morphologies and microstructures of kinked InP nanowires (NWs) prepared by solid-source chemical vapor deposition method were examined using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Statistical analysis and structural characterization reveal that four different kinds of kinks are dominant in the grown InP NWs with a bending angle of approximately 70°, 90°, 110°, and 170°, respectively. The formation mechanisms of these kinks are discussed. Specifically, the existence of kinks with bending angles of approximately 70° and 110° are mainly attributed to the occurrence of stacking faults and nanotwins in the NWs, which could easily form by the glide of {111} planes, while approximately 90° kinks result from the local amorphorization of InP NWs. Also, approximately 170° kinks are mainly caused by small-angle boundaries, where the insertion of extra atomic planes could make the NWs slightly bent. In addition, multiple kinks with various angles are also observed. Importantly, all these results are beneficial to understand the formation mechanisms of kinks in compound semiconductor NWs, which could guide the design of nanostructured materials, morphologies, microstructures, and/or enhanced mechanical properties.  相似文献   
189.
Alan V. Levy  Johnny Yan  Vas D. Arora 《Wear》1985,101(2):117-126
The erosion behavior of carburized AISI 8620 steel for sand slurry service was investigated. The jet impingement type of test was used where sand slurry is directed at flat specimens to determine the erosion rates and mechanism of erosion. The effects of steel heat treatments, slurry velocities and particle concentrations on erosion rates were investigated.  相似文献   
190.
Single-walled carbon nanotubes (SWCNT) show unique properties find applications in micro devices; electronics to biological systems specially drug delivery and gene therapy. However the manufacture and extensive use of nanotubes raises concern about its safe use and human health. Very few studies have been carried out on toxicity of carbon nanotubes in experimental animals and humans, thus resulted in limiting their use. The extensive toxicological studies using in vitro and in vivo models are necessary and are required to establish safe manufacturing guidelines and also the use of SWCNT. These studies also help the chemists to prepare derivative of SWCNT with less or no toxicity. The present study was undertaken to determine the toxicity exhibited by SWCNT in rat lung epithelial cells as a model system. Lung epithelial cells (LE cells) were cultured with or without SWCNT and reactive oxygen species (ROS) produced were measured by change in fluorescence using dichloro fluorescein (DCF). The results show increased ROS on exposure to SWCNT in a dose and time dependent manner. The decrease in glutathione content suggested the depletion and loss of protective mechanism against ROS in SWCNT treated cells. Use of rotenone, the inhibitor of mitochondrial function have no effect on ROS levels suggested that mitochondria is not involved in SWCNT induced ROS production. Studies carried out on the effect of SWCNT on superoxide dismutase (SOD-1 and SOD-2) levels in LE cells, indicates that these enzyme levels decreased by 24 hours. The increased ROS induced by SWCNT on LE cells decreased by treating the cells with 1 mM of glutathione, N-Acetyl Cysteine, and Vitamin C. These results further prove that SWCNT induces oxidative stress in LE cells and shows loss of antioxidants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号