首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1598篇
  免费   17篇
电工技术   30篇
化学工业   97篇
金属工艺   12篇
机械仪表   20篇
建筑科学   38篇
矿业工程   4篇
能源动力   12篇
轻工业   43篇
水利工程   7篇
石油天然气   2篇
无线电   79篇
一般工业技术   100篇
冶金工业   1108篇
原子能技术   7篇
自动化技术   56篇
  2022年   9篇
  2021年   10篇
  2020年   6篇
  2019年   12篇
  2018年   14篇
  2017年   6篇
  2016年   15篇
  2015年   4篇
  2014年   10篇
  2013年   28篇
  2012年   29篇
  2011年   34篇
  2010年   17篇
  2009年   21篇
  2008年   28篇
  2007年   23篇
  2006年   20篇
  2005年   20篇
  2004年   18篇
  2003年   19篇
  2002年   13篇
  2001年   23篇
  2000年   10篇
  1999年   52篇
  1998年   380篇
  1997年   207篇
  1996年   126篇
  1995年   68篇
  1994年   45篇
  1993年   82篇
  1992年   17篇
  1991年   16篇
  1990年   10篇
  1989年   14篇
  1988年   10篇
  1987年   10篇
  1986年   15篇
  1985年   9篇
  1983年   4篇
  1982年   9篇
  1981年   7篇
  1980年   12篇
  1978年   4篇
  1977年   15篇
  1976年   76篇
  1975年   7篇
  1974年   5篇
  1973年   5篇
  1971年   4篇
  1969年   3篇
排序方式: 共有1615条查询结果,搜索用时 316 毫秒
21.
While the osteopenia associated with oestrogen deficiency is thought to arise from a relative defect in bone formation with respect to resorption, oestrogen administration itself leads to a decrease, rather than an increase, in bone formation. This decrease in bone formation, which arises from oestrogen's inhibitory effect on bone turnover, presumably masks any underlying tendency of oestrogen treatment towards stimulation of bone formation. To investigate this further, we have examined the early effect of discontinuing the administration of oestradiol-17 beta (OE2; 40 micrograms/kg) on bone formation indices in ovariectomized 13-week-old rats, before the turnover-induced increase in formation occurs. Histomorphometric indices were assessed at the proximal tibial metaphysis 0, 7, 10, 13 and 16 days following discontinuation of OE2 treatment. Measurements of body weight, uterine weight and longitudinal growth rate confirmed that there were rapid effects of OE2 deficiency on these parameters. We could detect no significant increase in bone resorption, as measured by osteoclast surface and number, until 16 days after ending treatment with OE2; this was coincidental with a reduction in bone volume. Shorter periods of OE2 deficiency were associated with a marked decrease in bone formation, as assessed by dynamic histomorphometric indices. This inhibition of bone formation was largely due to a reduction in double fluorochrome-labeled trabecular surfaces, which were decreased by approximately 70%. We conclude that ending OE2 administration in ovariectomized rats caused a striking decrease in trabecular bone formation, if such indices are assessed prior to the subsequent turnover-induced increase in formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
22.
Local anesthetics are a diverse group of clinically useful compounds that act as pore blockers of both voltage- and cyclic nucleotide-gated (CNG) ion channels. We used the local anesthetic tetracaine to probe the nature of the conformational change that occurs in the pore of CNG channels during the opening allosteric transition. When applied to the intracellular side of wild-type rod CNG channels expressed in Xenopus oocytes from the alpha subunit, the local anesthetic tetracaine exhibits state-dependent block, binding with much higher affinity to closed states than to open states. Here we show that neutralization of a glutamic acid in the conserved P region (E363G) eliminated this state dependence of tetracaine block. Tetracaine blocked E363G channels with the same effectiveness at high concentrations of cGMP, when the channel spent more time open, and at low concentrations of cGMP, when the channel spent more time closed. In addition, Ni2+, which promotes the opening allosteric transition, decreased the effectiveness of tetracaine block of wild-type but not E363G channels. Similar results were obtained in a chimeric CNG channel that exhibits a more favorable opening allosteric transition. These results suggest that E363 is accessible to internal tetracaine in the closed but not the open configuration of the pore and that the conformational change that accompanies channel opening includes a change in the conformation or accessibility of E363.  相似文献   
23.
Although hyperketonemia and/or altered growth hormone secretion caused by diabetes have been implicated in enhanced CYP2E1, 2B, 3A and 4A expression, the effect of insulin on hepatic P450 expression, in the absence of associated metabolic/hormonal alterations, remains unknown. Primary cultured rat hepatocytes have been shown (Zangar et al., Drug Metab. Dispos., 23:681, 1995) to express stable and inducible CYP2E1 mRNA and protein levels, and provide an excellent system for mechanistic examination of the effect of insulin on CYP2E1, 2B, 3A and 4A expression. Maintaining primary rat hepatocytes in culture in the absence of insulin for 48, 72, or 96 h increased CYP2E1 mRNA levels 5-, 11-, and 4-fold, respectively, relative to cells maintained in the presence of the standard concentration of 1 microM insulin. In contrast, CYP2B mRNA levels increased only approximately 2-fold in the absence of insulin, when compared with the presence of 1 microM insulin. CYP2E1 and 2B protein levels were increased 6.7- and 3.8-fold, respectively, in cells cultured for 96 h in the absence of insulin as compared with those cultured in medium containing 1 microM insulin. Concentration-response studies revealed that decreasing the concentration of insulin below 10 nM (i.e. 1 nM, 0.1 nM, no insulin) increased CYP2E1 mRNA levels 4-, 7-, and 11-fold, respectively. In contrast, no such concentration-dependence was observed for CYP2B mRNA expression. As CYP3A and 4A expression is also elevated in diabetic rats, the effects of insulin on these P450s was also examined. CYP3A mRNA levels were unaltered and CYP4A mRNA levels were decreased marginally (approximately 50%) by the absence of insulin relative to levels in cells cultured in the presence of 1 microM insulin over 96 h in culture. The results of this study provide evidence that insulin itself, in the absence of other diabetes-induced metabolic or hormonal alterations, affects CYP2E1 and 2B, but not CYP3A or 4A, expression in primary cultured rat hepatocytes. Furthermore, CYP2E1 expression is differentially regulated by insulin relative to CYP2B, 3A or 4A. This study also demonstrates that decreasing the concentration of insulin in the culture medium provides a method by which CYP2E1 levels can be increased in primary cultured hepatocytes to facilitate mechanistic studies on the regulation of CYP2E1 expression.  相似文献   
24.
The protein composition, steady state and time-resolved fluorescence emission spectra were studied in solubilized and aggregated LHCII complexes, that were prepared according to two different isolation protocols: (1) by fractionation of cation-depleted thylakoid membranes using the non-ionic detergent Triton X-100 according to the procedure of Burke et al. [(1978) Arch. Biochem. Biophys. 187, 252-263] or (2) by solubilization with N-beta-dodecyl maltoside (beta-DM) of photosystem II (PSII) membrane fragments in the presence of cations [Irrgang et al. (1988) Eur. J. Biochem. 178, 207-217]. Based on the analysis of the decay-associated emission spectra measured at 10 and 80 K five long-wavelength chlorophyll species were identified in aggregated LHCII complexes. These five forms are characterized by emission maxima at 681.5, 683, 687, 695, or 702 nm. All of these forms were found in both types of LHCII preparations but the relative amounts and temperature dependency of these species were markedly different in the aggregated LHCII complexes isolated by the two procedures. It was found that these differences cannot be simply explained by effects due to using a less mild detergent as beta-DM or by an ionic influence of Ca2+. Biochemical analysis of the protein composition showed that beta-DM type LHCII consists of all the chlorophyll (Chl)binding proteins belonging to the antenna system of PSII except the CP29 type II gene product (CP29). In contrast, the Triton X-100-solubilized LHCII is highly depleted in CP26 (CP 29 type I gene product) and is contaminated by a variety of unidentified polypeptides. It is proposed that the aggregates of LHCII prepared using Triton X-100 acquire specific spectral and kinetic features due to interaction between the bulk of LHCII subunits and minor protein(s).  相似文献   
25.
Many studies have used pharmacokinetic (compartment) models for skin to predict or analyze absorption of chemicals through skin. In these studies, several different definitions of the rate constants were used. The purpose of this study was to develop a general procedure for relating compartment model rate constants to dermal absorption parameters, such as permeability and partition coefficients, and to assess whether different definitions of the rate constants produce different results. Rate constant expressions were developed by requiring a one-compartment model to match a one-membrane model at specific conditions. Because a membrane model contains more information than a compartment model, a compartment model cannot match the membrane model in all respects. Consequently, many compartment models (i.e., different definitions of the rate constants) can be developed which match the membrane model for different conditions. Using this procedure, 11 different compartment models were developed and compared to the membrane model for four different dermal absorption scenarios. The compartment model that most closely matches the membrane model depends on the specific exposure scenario and what is to be predicted. One of the new compartment models agrees reasonably well with the membrane model, for the cases considered.  相似文献   
26.
Physiologically, a postprandial glucose rise induces metabolic signal sequences that use several steps in common in both the pancreas and peripheral tissues but result in different events due to specialized tissue functions. Glucose transport performed by tissue-specific glucose transporters is, in general, not rate limiting. The next step is phosphorylation of glucose by cell-specific hexokinases. In the beta-cell, glucokinase (or hexokinase IV) is activated upon binding to a pore protein in the outer mitochondrial membrane at contact sites between outer and inner membranes. The same mechanism applies for hexokinase II in skeletal muscle and adipose tissue. The activation of hexokinases depends on a contact site-specific structure of the pore, which is voltage-dependent and influenced by the electric potential of the inner mitochondrial membrane. Mitochondria lacking a membrane potential because of defects in the respiratory chain would thus not be able to increase the glucose-phosphorylating enzyme activity over basal state. Binding and activation of hexokinases to mitochondrial contact sites lead to an acceleration of the formation of both ADP and glucose-6-phosphate (G-6-P). ADP directly enters the mitochondrion and stimulates mitochondrial oxidative phosphorylation. G-6-P is an important intermediate of energy metabolism at the switch position between glycolysis, glycogen synthesis, and the pentose-phosphate shunt. Initiated by blood glucose elevation, mitochondrial oxidative phosphorylation is accelerated in a concerted action coupling glycolysis to mitochondrial metabolism at three different points: first, through NADH transfer to the respiratory chain complex I via the malate/aspartate shuttle; second, by providing FADH2 to complex II through the glycerol-phosphate/dihydroxy-acetone-phosphate cycle; and third, by the action of hexo(gluco)kinases providing ADP for complex V, the ATP synthetase. As cytosolic and mitochondrial isozymes of creatine kinase (CK) are observed in insulinoma cells, the phosphocreatine (CrP) shuttle, working in brain and muscle, may also be involved in signaling glucose-induced insulin secretion in beta-cells. An interplay between the plasma membrane-bound CK and the mitochondrial CK could provide a mechanism to increase ATP locally at the KATP channels, coordinated to the activity of mitochondrial CrP production. Closure of the KATP channels by ATP would lead to an increase of cytosolic and, even more, mitochondrial calcium and finally to insulin secretion. Thus in beta-cells, glucose, via bound glucokinase, stimulates mitochondrial CrP synthesis. The same signaling sequence is used in the opposite direction in muscle during exercise when high ATP turnover increases the creatine level that stimulates mitochondrial ATP synthesis and glucose phosphorylation via hexokinase. Furthermore, this cytosolic/mitochondrial cross-talk is also involved in activation of muscle glycogen synthesis by glucose. The activity of mitochondrially bound hexokinase provides G-6-P and stimulates UTP production through mitochondrial nucleoside diphosphate kinase. Pathophysiologically, there are at least two genetically different forms of diabetes linked to energy metabolism: the first example is one form of maturity-onset diabetes of the young (MODY2), an autosomal dominant disorder caused by point mutations of the glucokinase gene; the second example is several forms of mitochondrial diabetes caused by point and length mutations of the mitochondrial DNA (mtDNA) that encodes several subunits of the respiratory chain complexes. Because the mtDNA is vulnerable and accumulates point and length mutations during aging, it is likely to contribute to the manifestation of some forms of NIDDM.(ABSTRACT TRUNCATED)  相似文献   
27.
Many strains of mycobacteria produce two ferric chelating substances that are termed exochelin (an excreted product) and mycobactin (a cell-associated product). These agents may function as iron acquisition siderophores. To examine the genetics of the iron acquisition system in mycobacteria, ultraviolet (UV) and transposon (Tn611) mutagenesis techniques were used to generate exochelin-deficient mutants of Mycobacterium smegmatis strains ATCC 607 and LR222 respectively. Mutants were identified on CAS siderophore detection agar plates. Comparisons of the amounts of CAS-reactive material excreted by the possible mutant strains with that of the wild-type strains verified that seven UV mutant strains and two confirmed transposition mutant strains were deficient in exochelin production. Cell-associated mycobactin production in the mutants appeared to be normal. From the two transposon mutants, the mutated gene regions were cloned and identified by colony hybridization with an IS6100 probe, and the DNA regions flanking the transposon insertion sites were then used as probes to clone the wild-type loci from M. smegmatis LR222 genomic DNA. Complementation assays showed that an 8 kb PstI fragment and a 4.8 kb PstI/SacI subclone of this fragment complemented one transposon mutant (LUN2) and one UV mutant (R92). A 10.1 kb SacI fragment restored exochelin production to the other transposon mutant (LUN1). The nucleotide sequence of the 15.3 kb DNA region that spanned the two transposon insertion sites overlapped the 5' region of the previously reported exochelin biosynthetic gene fxbA and contained three open reading frames that were transcribed in the opposite orientation to fxbA. The corresponding genes were designated exiT, fxbB and fxbC. The deduced amino acid sequence of ExiT suggested that it was a member of the ABC transporter superfamily, while FxbB and FxbC displayed significant homology with many enzymes (including pristinamycin I synthetase) that catalyse non-ribosomal peptide synthesis. We propose that the peptide backbone of the siderophore exochelin is synthesized in part by enzymes resembling non-ribosomal peptide synthetases and that the ABC transporter ExiT is responsible for exochelin excretion.  相似文献   
28.
A new class of potent, orally active phenyl piperazine-based GH secretagogues have been discovered from attempts to mimic the arrangement of the phenyl substituent in the spiroindanyl piperidine and spiroindoline sulfonamide privileged structures of 4 and 1, respectively. The best of these compounds, 18 (EC50 = 2.8 nM) is nearly as potent as MK-0677 for releasing GH from rat pituitary cells.  相似文献   
29.
Dewatering of Sewage Sludge   总被引:1,自引:0,他引:1  
John T. Novak 《Drying Technology》2006,24(10):1257-1262
Dewatering of sewage sludges is usually carried out using belt filter presses or centrifuges. The ability to remove water from sludges by mechanical dewatering is a property of both the sludge and the equipment used for dewatering. Newer high-solids centrifuges can remove more water than a belt press but require a higher chemical conditioning dose. The Gt value, the product of the mean velocity gradient and the shear time, has been found to be a useful parameter for characterizing the shear in mechanical dewatering equipment. Dewatering can be considered a two-step process, filtration followed by expression. The expression step is the most important of these and the benefits of various sludge processing techniques and conditioning chemical types remains a fruitful area of research.  相似文献   
30.
Fatigue crack propagation rates in injection molded nylon 66 were previously shown to be strongly affected by prior processing history. To provide a physical basis for the observed acceleration in crack growth rates, microtomed sections were cut through the tips of stable fatigue cracks and examined by optical microscopy. A reduction in spherulite size occurs with reprocessing along with an accompanying decrease in the amount of deformation at the crack tip. For the initially processed nylon 66 this deformation consists of a vast array of independently initiated craze-like zones. Patchy type regions observed on the fatigue fracture surface are similar in size to the initially formed crazed zones. Crack advance occurs by the breakdown and coalescence of the crazed regions via matrix shearing. The extensive damage zone is believed to result in a reduction in stress intensity at the crack tip thereby reducing the crack propagation rates. For the reprocessed nylon 66, one observes fewer crazes and a sharper fatigue crack tip with a consequent acceleration in crack propagation rates and a smoother fracture surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号