首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2444篇
  免费   23篇
  国内免费   11篇
电工技术   48篇
综合类   9篇
化学工业   438篇
金属工艺   38篇
机械仪表   59篇
建筑科学   78篇
矿业工程   6篇
能源动力   164篇
轻工业   204篇
水利工程   16篇
石油天然气   24篇
无线电   240篇
一般工业技术   319篇
冶金工业   513篇
原子能技术   16篇
自动化技术   306篇
  2025年   2篇
  2024年   48篇
  2023年   49篇
  2022年   84篇
  2021年   114篇
  2020年   96篇
  2019年   101篇
  2018年   101篇
  2017年   101篇
  2016年   93篇
  2015年   49篇
  2014年   93篇
  2013年   172篇
  2012年   118篇
  2011年   133篇
  2010年   95篇
  2009年   99篇
  2008年   75篇
  2007年   61篇
  2006年   35篇
  2005年   27篇
  2004年   23篇
  2003年   25篇
  2002年   23篇
  2001年   23篇
  2000年   17篇
  1999年   27篇
  1998年   151篇
  1997年   86篇
  1996年   70篇
  1995年   39篇
  1994年   40篇
  1993年   25篇
  1992年   17篇
  1991年   9篇
  1990年   14篇
  1989年   11篇
  1988年   13篇
  1987年   9篇
  1986年   9篇
  1985年   14篇
  1984年   7篇
  1983年   10篇
  1982年   5篇
  1981年   5篇
  1980年   5篇
  1978年   5篇
  1977年   15篇
  1976年   31篇
  1975年   3篇
排序方式: 共有2478条查询结果,搜索用时 0 毫秒
71.
    
The rapid progression in biomaterial nanotechnology apprehends the potential of non-toxic and potent polysaccharide delivery modules to overcome oral chemotherapeutic challenges. The present study is aimed to design, fabricate and characterize polysaccharide nanoparticles for methotrexate (MTX) delivery. The nanoparticles (NPs) were prepared by Abelmoschus esculentus mucilage (AEM) and chitosan (CS) by the modified coacervation method, followed by ultra-sonification. The NPs showed much better pharmaceutical properties with a spherical shape and smooth surface of 213.4–254.2 nm with PDI ranging between 0.279–0.485 size with entrapment efficiency varying from 42.08 ± 1.2 to 72.23 ± 2.0. The results revealed NPs to possess positive zeta potential and a low polydispersity index (PDI). The in-vitro drug release showed a sustained release of the drug up to 32 h with pH-dependence. Blank AEM -CS NPs showed no in-vivo toxicity for a time duration of 14 days, accompanied by high cytotoxic effects of optimized MTX loaded NPs against MCF-7 and MD-MBA231 cells by MTT assay. In conclusion, the findings advocated the therapeutic potential of AEM/CS NPs as an efficacious tool, offering a new perspective for pH-responsive routing of anticancer drugs with tumor cells as a target.  相似文献   
72.
73.
    
Heavy metal toxicity is one of the most devastating abiotic stresses. Heavy metals cause serious damage to plant growth and productivity, which is a major problem for sustainable agriculture. It adversely affects plant molecular physiology and biochemistry by generating osmotic stress, ionic imbalance, oxidative stress, membrane disorganization, cellular toxicity, and metabolic homeostasis. To improve and stimulate plant tolerance to heavy metal stress, the application of biostimulants can be an effective approach without threatening the ecosystem. Melatonin (N-acetyl-5-methoxytryptamine), a biostimulator, plant growth regulator, and antioxidant, promotes plant tolerance to heavy metal stress by improving redox and nutrient homeostasis, osmotic balance, and primary and secondary metabolism. It is important to perceive the complete and detailed regulatory mechanisms of exogenous and endogenous melatonin-mediated heavy metal-toxicity mitigation in plants to identify potential research gaps that should be addressed in the future. This review provides a novel insight to understand the multifunctional role of melatonin in reducing heavy metal stress and the underlying molecular mechanisms.  相似文献   
74.
    
Even in a natural ecosystem, plants are continuously threatened by various microbial diseases. To save themselves from these diverse infections, plants build a robust, multilayered immune system through their natural chemical compounds. Among the several crucial bioactive compounds possessed by plants’ immune systems, antimicrobial peptides (AMPs) rank in the first tier. These AMPs are environmentally friendly, anti-pathogenic, and do not bring harm to humans. Antimicrobial peptides can be isolated in several ways, but recombinant protein production has become increasingly popular in recent years, with the Escherichia coli expression system being the most widely used. However, the efficacy of this expression system is compromised due to the difficulty of removing endotoxin from its system. Therefore, this review suggests a high-throughput cDNA library-based plant-derived AMP isolation technique using the Bacillus subtilis expression system. This method can be performed for large-scale screening of plant sources to classify unique or homologous AMPs for the agronomic and applied field of plant studies. Furthermore, this review also focuses on the efficacy of plant AMPs, which are dependent on their numerous modes of action and exceptional structural stability to function against a wide range of invaders. To conclude, the findings from this study will be useful in investigating how novel AMPs are distributed among plants and provide detailed guidelines for an effective screening strategy of AMPs.  相似文献   
75.
    
Gangliosides serve as antitumor therapy targets and aberrations in their composition strongly correlate with tumor growth and invasiveness. Anaplastic ganglioglioma is a rare, poorly characterized, malignant neuronal–glial tumor type. We present the first comparative characterization of ganglioside composition in anaplastic ganglioglioma vs. peritumoral and healthy brain tissues by combining mass spectrometry and thin-layer chromatography. Anaplastic ganglioglioma ganglioside composition was highly distinguishable from both peritumoral and healthy tissue despite having five to six times lower total content. Ten out of twelve MS-identified ganglioside classes, defined by unique glycan residues, were represented by a large number and considerable abundance of individual species with different fatty acid residues (C16–C24) in ceramide portions. The major structurally identified class was tumor-associated GD3 (>50%) with 11 species; GD3 (d18:1/24:0) being the most abundant. The dominant sphingoid base residue in ganglioside ceramides was sphingosine (d18:1), followed by eicosasphingosine (d20:1). The peritumoral tissue ganglioside composition was estimated as normal. Specific ganglioside composition and large variability of ganglioside ceramide structures determined in anaplastic ganglioglioma demonstrate realistic ganglioside expression patterns and correspond to the profile of high-grade malignancy brain tumors.  相似文献   
76.
We measured the velocity of sound in olive oil under pressure with the Brillouin light scattering technique. Using the values for the density and the thermal conductivity that have only recently been reported, we calculated the adiabatic compressibility and the isobaric specific heat up to 356 MPa and the thermal diffusivity up to 200 MPa. The specific heat displays a maximum at 124 MPa, suggesting a possible phase transition around this pressure. Apart from the theoretical and practical importance of these results for the food industry and beyond, this work shows that Brillouin light scattering and macroscopic methods are complementary and can be employed to measure thermophysical parameters of food liquids under pressure.  相似文献   
77.
    
Thermal management is a critical challenge for semiconductor light-emitting diodes (LEDs), as inadequate heat dissipation reduces luminous efficiency and shortens the devices’ lifespan. Thus, there is an urgent need for more effective cooling strategies to enhance the energy efficiency of LEDs. LED streetlights, which operate primarily at night and experience high chip temperatures, could benefit greatly from improved thermal management. In this study, we introduce a sky-facing radiative cooling strategy for outdoor LED streetlights, an innovative yet less explored approach for thermal management of optoelectronics. Our method employs a nanoporous polyethylene (nanoPE) material that possesses both infrared transparency and visible reflectivity. This approach enables the direct release of heat generated by the LED through a sky-facing radiative cooling channel, while also reflecting a significant portion of the light back for illumination. By incorporating nanoPE as a cover for sky-facing LED lights, we achieved a remarkable temperature reduction of 7.8 ℃ in controlled laboratory settings and 4.4 ℃ in outdoor environments. These reductions were accompanied by an efficiency improvement of approximately 5% and 4%, respectively. This enhanced efficiency translates into substantial annual energy savings, estimated at 1.9 terawatt-hours when considering the use of LED streetlights in the United States. Furthermore, this electricity saving corresponds to a reduction of approximately 1.3 million metric tons of CO2 emissions, equivalent to 0.03% of the total annual CO2 emissions by the United States in 2018.  相似文献   
78.

Authors Index

JNSM Volume 10 (2002) Reviewers  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号