首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2657篇
  免费   90篇
  国内免费   5篇
电工技术   12篇
综合类   1篇
化学工业   242篇
金属工艺   55篇
机械仪表   95篇
建筑科学   18篇
能源动力   77篇
轻工业   124篇
水利工程   4篇
石油天然气   4篇
无线电   237篇
一般工业技术   274篇
冶金工业   1442篇
原子能技术   32篇
自动化技术   135篇
  2024年   2篇
  2023年   25篇
  2022年   25篇
  2021年   55篇
  2020年   34篇
  2019年   32篇
  2018年   48篇
  2017年   56篇
  2016年   56篇
  2015年   46篇
  2014年   72篇
  2013年   101篇
  2012年   97篇
  2011年   99篇
  2010年   72篇
  2009年   70篇
  2008年   76篇
  2007年   37篇
  2006年   45篇
  2005年   39篇
  2004年   52篇
  2003年   42篇
  2002年   27篇
  2001年   21篇
  2000年   26篇
  1999年   60篇
  1998年   491篇
  1997年   288篇
  1996年   177篇
  1995年   84篇
  1994年   75篇
  1993年   81篇
  1992年   11篇
  1991年   20篇
  1990年   13篇
  1989年   25篇
  1988年   23篇
  1987年   29篇
  1986年   17篇
  1985年   17篇
  1984年   2篇
  1983年   2篇
  1981年   5篇
  1980年   5篇
  1978年   2篇
  1977年   22篇
  1976年   43篇
  1975年   2篇
  1974年   1篇
  1955年   1篇
排序方式: 共有2752条查询结果,搜索用时 15 毫秒
21.
To increase carrier confinement, the GaN barrier layer was substituted with an AlInGaN quaternary barrier layer which was lattice-matched to GaN in the GaN-InGaN multiple quantum wells (MQWs). Photoluminescence (PL) and high-resolution X-ray diffraction measurements showed that the AlInGaN barrier layer has a higher bandgap energy than the originally used GaN barrier layer. The PL intensity of the five periods of AlInGaN-InGaN MQWs was increased by three times compared to that of InGaN-GaN MQWs. The electroluminescence (EL) emission peak of AlInGaN-InGaN MQWs ultraviolet light-emitting diode (UV LED) was blue-shifted, compared to a GaN-InGaN MQWs UV LED and the integrated EL intensity of the AlInGaN-InGaN MQWs UV LED increased linearly up to 100 mA. These results indicated that the AlInGaN-InGaN MQWs UV LED has a stronger carrier confinement than a GaN-InGaN MQWs UV LED due to the larger barrier height of the AlInGaN barrier layer compared to a GaN barrier layer.  相似文献   
22.
A one-step chemical vapor deposition (CVD) is proposed to grow multilayer graphene (MLG) with tunable doping types using a copper–phosphorus eutectic system as a catalyst. At the growth temperature, the phosphorus-dissolved copper forms a liquid phase, which promotes the formation of phosphorus-doped MLG. With this method, the thickness and doping level of graphene are simultaneously controlled at the synthesis stage. Moreover, the proposed CVD method enables patterned growth of MLG at the microscale. The resultant phosphorus-doped graphene demonstrates a tunable doping state from large n-type doping to p-type doping because of the high affinity of phosphorus to water molecules. Finally, stable n-type doping of MLG by passivating it with a parylene thin film is demonstrated.  相似文献   
23.
In this paper, we present a time domain combined field integral equation formulation (TD‐CFIE) to analyze the transient electromagnetic response from dielectric objects. The solution method is based on the method of moments which involves separate spatial and temporal testing procedures. A set of the RWG functions is used for spatial expansion of the equivalent electric and magnetic current densities, and a combination of RWG and its orthogonal component is used for spatial testing. The time domain unknowns are approximated by a set of orthonormal basis functions derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable makes it possible to handle the time derivative terms in the integral equation and decouples the space‐time continuum in an analytic fashion. Numerical results computed by the proposed formulation are compared with the solutions of the frequency domain combined field integral equation.  相似文献   
24.
Epitaxial CdTe thin films were grown on GaAs/Si(001) substrates by metalorganic chemical vapor deposition using thin GaAs as a buffer layer. The interfaces were investigated using high-resolution transmission electron microscopy and geometric phase analysis strain mapping. It was observed that dislocation cores exist at the CdTe/GaAs interface with periodic distribution. The spacing of the misfit dislocation was measured to be about 2?nm, corresponding to the calculated spacing of a misfit dislocation (2.6?nm) in CdTe/Si with Burgers vector of a[110]/2. From these results, it is suggested that the GaAs buffer layer effectively absorbs the strain originating from the large lattice mismatch between the CdTe thin film and Si substrate with the formation of periodic structural defects.  相似文献   
25.
26.
A new video transport protocol for multicast agents in wireless mesh networks (WMNs) is proposed in this paper. The proposed protocol enables a significant reduction in the transmission overhead, while providing reliable communication for its use in multicast applications. This proposed reliable protocol provides a practical approach for an overlay peer‐to‐peer multicast facility supported within the application layer. This obviates the need to give upgraded routers capable of handling multicast broadcasting or modify the existing protocol stack. The protocol tolerates partial losses in multimedia transmissions, while supporting control of the delay sensitivity of such transmissions in WMNs. The key issue in this protocol is the ability to detect packet loss, anticipate retransmission requests, and use the anticipated retransmission requests to transmit the lost packets prior to requests from other receiving agents. The proposed protocol allows for the receiver to determine if retransmission of lost packets is required, ensuring the greatest flexibility needed for a reliable multicast protocol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
27.
In this study, we have investigated sensitivities of the ion implanted silicon wafers processed by rapid thermal annealing (RTA), which can reveal the variation of sheet resistance as a function of annealing temperature as well as implantation parameters. All the wafers were sequentially implanted by the arsenic or phosphorous implantations at 40, 80, and 100 keV with the dose level of 1014 to 2 × 1016 ions/cm2. Rapid thermal annealing was carried out for 10 s by the infrared irradiation at a temperature between 850 and 1150°C in the nitrogen ambient. The activated wafer was characterized by the measurements of the sheet resistance and its uniformity mapping. The values of sensitivities are determined from the curve fitting of the experimental data to the fitting equation of correlation between the sheet resistance and process variables. From the sensitivity values and the deviation of sheet resistance, the optimum process conditions minimizing the effects of straggle in process parameters are obtained. As a result, a strong dependence of the sensitivity on the process variables, especially annealing temperatures and dose levels is also found. From the sensitivity analysis of the 10 s RTA process, the optimum values for the implant dose and annealing temperature are found to be in the range of 1016 ions/cm2 and 1050-1100°C, respectively. The sensitivity analysis of sheet resistance will provide valuable data for accurate activation process, offering a guideline for dose monitoring and calibration of ion implantation process.  相似文献   
28.
It is demonstrated that electric transport in Bi‐deficient Bi1‐δFeO3 ferroelectric thin films, which act as a p‐type semiconductor, can be continuously and reversibly controlled by manipulating ferroelectric domains. Ferroelectric domain configuration is modified by applying a weak voltage stress to Pt/Bi1‐δFeO3/SrRuO3 thin‐film capacitors. This results in diode behavior in macroscopic charge‐transport properties as well as shrinkage of polarization‐voltage hysteresis loops. The forward current density depends on the voltage stress time controlling the domain configuration in the Bi1‐δFeO3 film. Piezoresponse force microscopy shows that the density of head‐to‐head/tail‐to‐tail unpenetrating local domains created by the voltage stress is directly related to the continuous modification of the charge transport and the diode effect. The control of charge transport is discussed in conjunction with polarization‐dependent interfacial barriers and charge trapping at the non‐neutral domain walls of unpenetrating tail‐to‐tail domains. Because domain walls in Bi1‐δFeO3 act as local conducting paths for charge transport, the domain‐wall‐mediated charge transport can be extended to ferroelectric resistive nonvolatile memories and nanochannel field‐effect transistors with high performances conceptually.  相似文献   
29.
The development of an electrochemically robust method for the low‐temperature deposition of cuprous oxide (Cu2O) thin films with reliable and conductive p‐type characteristics could yield breakthroughs in earth abundant and ecofriendly all oxide‐based photoelectronic devices. The incorporation of the group‐V element antimony (Sb) in the solution‐based electrodeposition process has been investigated. A small amount of Sb (1.2 at%) in the Cu2O resulted in rapid nucleation and coalescence at the initial stage of electrochemical reaction, and finally made the surface morphology smooth in 2D. The growth behavior changed due to Sb addition and produced a strong diffraction intensity, single‐domain‐like diffraction patterns, and low angle tilt boundaries in the Cu2O:Sb film, implying extremely improved crystallinity. As a result, these films exhibited extraordinary optical transmittance and band‐to‐band photoluminescence emission as well as higher electrical conductivity. The Cu/Cu2O:Sb Schottky diode showed good rectifying characteristics and more sensible photoresponsibility.  相似文献   
30.
Flexible transparent thin‐film transistors (TTFTs) have emerged as next‐generation transistors because of their applicability in transparent electronic devices. In particular, the major driving force behind solution‐processed zinc oxide film research is its prospective use in printing for electronics. Since the patterning that prevents current leakage and crosstalk noise is essential to fabricate TTFTs, the need for sophisticated patterning methods is critical. In patterning solution‐processed ZnO thin films, several points require careful consideration. In general, as these thin films have a porous structure, conventional patterning based on photolithography causes loss of film performance. In addition, as controlling the drying process is very subtle and cumbersome, it is difficult to fabricate ZnO semiconductor films with robust fidelity through selective printing or patterning. Therefore, we have developed a simple selective patterning method using a substrate pre‐patterned through bond breakage of poly(methyl methacrylate) (PMMA), as well as a new developing method using a toluene–methanol mixture as a binary solvent mixture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号