首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   10篇
  国内免费   3篇
综合类   1篇
化学工业   41篇
金属工艺   4篇
建筑科学   2篇
能源动力   8篇
轻工业   32篇
石油天然气   2篇
无线电   21篇
一般工业技术   39篇
冶金工业   5篇
原子能技术   1篇
自动化技术   26篇
  2023年   8篇
  2022年   10篇
  2021年   5篇
  2020年   7篇
  2019年   6篇
  2018年   11篇
  2017年   7篇
  2016年   8篇
  2015年   4篇
  2014年   5篇
  2013年   12篇
  2012年   7篇
  2011年   9篇
  2010年   8篇
  2009年   9篇
  2008年   8篇
  2007年   12篇
  2006年   9篇
  2005年   6篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有182条查询结果,搜索用时 31 毫秒
21.
Samples of nominal compositions, Cs0.25Nb y W1−y O3 and Cs0.3Nb y W1−y O3 with 0.0 ≤ y ≤ 0.25 and 0.0 ≤ y ≤ 0.3 were synthesized using appropriate amounts of Cs2WO4, WO3 and WO2 in evacuated and closed silica glass tubes at 800 °C. The polycrystalline products contain hexagonal shaped crystals of up to 15 μm diameter as long as y ≤ 0.15. X-ray powder patterns of the samples reveal the formation of hexagonal tungsten bronze (HTB-I) type phase with y < 0.1. A mixture of HTB-I and an analogous less reduced hexagonal tungsten bronze (HTB-II) type phase is seen when y ≥ 0.1. HTB-II content increases with increasing y, revealing close similarity to bronzoid type phases when y = x. Results of SEM/EDX analysis also support a partial substitution of tungsten by niobium in the HTB-I type phase. Infrared absorption and optical reflectivity data shows the effect of increasing amount of non-metallic phase for y > 0.1 and the effect of counterdoping by Nb5+/W5+ substitution in the metallic HTB-I type phase for y ≤ 0.1, respectively. Reinvestigations in the system Rb0.3Nb y W1−y O3 (0.0 ≤ y ≤ 0.175) show similar results with increasing content of HTB-II type phase related with y.  相似文献   
22.
In this paper, we propose a novel test methodology for the detection of catastrophic and parametric faults present in analog very large scale integration circuits. An automatic test pattern generation algorithm is proposed to generate piece‐wise linear (PWL) stimulus using wavelets and a genetic algorithm. The PWL stimulus generated by the test algorithm is used as a test stimulus to the circuit under test. Faults are injected to the circuit under test and the wavelet coefficients obtained from the output response of the circuit. These coefficients are used to train the neural network for fault detection. The proposed method is validated with two IEEE benchmark circuits, namely, an operational amplifier and a state variable filter. This method gives 100% fault coverage for both catastrophic and parametric faults in these circuits.  相似文献   
23.
Surface active biopolymers such as proteins can form films with particularly high interfacial elasticities and viscosities and these molecules are widely exploited as foaming and emulsifying agents in foods. Solid particles of the correct size and wetting characteristics can also be extremely effective stabilizers of foams and emulsions, although the underlying mechanism of stabilization is somewhat different. Relatively little is known about what happens when both surface active polymers and surface active particles are present together. This work presents recent findings on the effects of mixtures of proteins plus novel food-compatible surface active particles. The proteins include caseins and whey proteins. The surface active particles prepared include cellulose + ethyl cellulose complexes, hydrophobically-modified starch granule particles and stable (non-spreading) protein-stabilized oil droplets. Interfacial shear rheology of adsorbed films was measured via a biconical bob apparatus and interfacial dilatational rheology was measured via a Langmuir trough type apparatus. The corresponding stability of bubbles to coalescence and disproportionation was assessed in separate experiments. Stability of oil-in-water emulsions was assessed via measurement of particle size distributions as function of time and visual assessment of the tendency to creaming and oiling off. In general, it is shown that the surface active particles on their own exhibit much lower measures of interfacial elasticity and viscosity than the proteins, but in combination with the proteins they appear to enhance the interfacial viscoelasticity considerably, with concomitant increases in bubble and emulsion droplet stability. There is little evidence of attractive interactions between the particles and the proteins, so a possible explanation of the increased stability is that the proteins increase the accumulation of particles at the interface, giving rise to increased jamming of particles at the interface.  相似文献   
24.
Devi  M. Kalpana  Umamaheswari  K. 《Wireless Networks》2021,27(3):2173-2192
Wireless Networks - Spectrum handoff has an undesirable effect in utilizing the space for Secondary user (SU) in the spectrum, which causes a handoff delay in cognitive radio network. The SU...  相似文献   
25.
26.
In this work we have evaluated molecular interactions in organically modified clay and polymer clay nanocomposite using a combination of experimental (photoacoustic FTIR, XRD) and computational (molecular dynamics (MD)) techniques. The FTIR data reveals hydrogen bond and ionic bond interaction between functional end groups of organic modifier and surface oxygen of interlayer clay sheet lying in the organically modified clay; and, the hydrogen bond formation between intercalated polymer and organic modifier and surface oxygen of clay sheet lying in the interlayer clay gallery in the polymer clay nanocomposite. In this work we report the nature of interactions between clay and polymer, clay and organic modifier in polymer-clay nanocomposites through experiments and molecular dynamics simulations.  相似文献   
27.
Swelling clays are found extensively in various parts of the world, and sodium-montmorillonite (Na-MMT) is the main constituent of an expansive clay mineral. In this work, the swelling behavior of Na-MMT clay with a wide range of organic fluids, high polar through low polar fluids, is studied using a combination of Fourier transform infrared (FTIR) technique and molecular dynamics (MD) simulations. The construction of the representative clay–fluid models is carried out, and the nature of nonbonded interactions between clay and fluids is studied using MD. Our FTIR and MD simulations results suggest the significant nonbonded interactions between Na-MMT clay and polar fluids, such as formamide and water. The nonbonded interactions of Na-MMT with methanol and acetone are significantly less than those in Na-MMT with polar fluids. The interactions of the fluids with various entities of the clay such as SiO, FeOH, MgOH, and AlOH captured via the spectroscopy experiments and modeling provide a finer understanding of the interactions and their contributions to swelling. The MD simulations are able to capture the band shifts observed in the spectra obtained in the spectroscopy experiments. This work also captures the conformations of interlayer sodium ions with formamide, water, methanol, and acetone during swelling. These nonbonded interactions provide insight into the molecular mechanism that the polarity of fluids plays an important role in the initiation of interlayer swelling, alteration in the orientations, and evolution of microstructure of swelling clays at the molecular scale.  相似文献   
28.
The macroscopic coaxial carbon cylinders (dia. ∼0.5 cm with varying lengths, ∼ 7–10 cm) consisting of aligned carbon nanotube (CNT) stacks have been prepared by controlled spray pyrolysis method. The coaxial carbon cylinders of CNT stacks have been formed directly inside the quartz tube. Another study is done on multi-walled CNTs (MWNTs)-polymer (e.g. polyethylene oxide (PEO), polyacrylamide (PAM)) composite films. We have investigated the structural, electrical and mechanical properties of MWNTs-PEO composites. Composites with different wt% (between 0 and 50 wt% of MWNTs) have been prepared and characterized by the scanning electron microscopic technique. Enhanced electrical conductivity and mechanical strength were observed for the MWNTs-PEO composites. We have also studied the electrical property of MWNTs-PAM composite films.  相似文献   
29.
Using an in situ mineralization process that is biomimetic we have synthesized new nanocomposites of chitosan/hydroxyapatite in 50–50 ratio(ChiHAP50), polygalacturonic acid/hydroxyapatite in 50–50 ratio (PgAHAP50) and Chitosan/hydroxyapatite/Polygalacturonic acid (ChiPgAHAP50). Polygalacturonic acid (PgA) is electrostatically complementary to chitosan, and thus is expected to provide stronger interfacial interactions and improve mechanical response. Atomic force imaging of fractured and polished surfaces suggests a multilevel organization in the hydroxyapatite/biopolymer nanocomposite. The AFM images of ChiPgAHAP50 nanocomposite display presence of chitosan rich and polygalacturonic rich domains. These chitosan rich and PgA rich domains are made of smaller globular shaped particles in which, hydroxyapatite nano-particles are embedded in the biopolymer matrix. The average size of the hydroxyapatite particles in PgAHAP50, ChiHAP50 and ChiPgAHAP50 were found to be 25, 42 and 34 nm respectively. The elastic moduli determined from nanoindentation of PgAHAP50, ChiHAP50 and ChiPgAHAP50 composites are 29.81, 17.56 and 23.62 GPa respectively. Hardness values of the three composites in the same order were found to be 1.56, 0.65 and 1.14 GPa respectively. Macro-mechanical tests showed significant enhancement in elastic moduli, strain to failure and compressive strength of ChiPgAHAP50 composites over ChiHAP50 and PgAHAP50.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号