首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   7篇
  国内免费   2篇
电工技术   21篇
化学工业   31篇
金属工艺   13篇
机械仪表   4篇
能源动力   5篇
轻工业   39篇
无线电   19篇
一般工业技术   40篇
冶金工业   9篇
原子能技术   3篇
自动化技术   5篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   13篇
  2013年   17篇
  2012年   10篇
  2011年   22篇
  2010年   6篇
  2009年   12篇
  2008年   6篇
  2007年   7篇
  2006年   2篇
  2005年   10篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
21.
Structural, mechanical and optical design work on antennas/launchers for the electron cyclotron range of frequency heating and current drive system in JT-60 Super Advanced (JT-60SA) have been advanced based on a linear motion antenna concept. A CAD model of the launcher was built with realistic component sizes. A mock-up of the steering structure consisting of two different bellows sections for poloidal and toroidal beam scanning was fabricated to test movement of the bellows. The poloidal (?40° to +20°) and toroidal (?15° to +15°) injection angle ranges required in JT-60SA were shown to be realized by this steering structure and mirrors.  相似文献   
22.
Dynamic and steady shear rheometry and differential scanning calorimetry (DSC) were used to investigate effects of xyloglucan (XG) on gelatinization and retrogradation of tapioca starch (TS). The viscosity of TS/XG pastes immediately after gelatinization increased with increasing XG content at the total polysaccharide concentration of 3.5%. Gelatinized TS alone showed pseudoplastic flow at low shear rates and dilatant behavior at higher shear rates (about >1 s−1), while mixtures with XG did not show dilatancy. Mechanical spectra of TS pastes containing XG were more liquid-like than those of TS pastes without XG. XG provides shear stability to the TS during storage. Increases in dynamic moduli during storage at 5 °C were suppressed in the presence of XG. In contrast, the retrogradation ratio determined based on DSC increased more rapidly in the presence of XG. These results suggest that XG forms a continuous liquid phase in a mixture to impart better mechanical stability during storage but to accelerate re-ordering of starch polysaccharides by effectively reducing the amount of water available for starch.  相似文献   
23.
Abstract

PZT capacitor with direct contact between Si substrate and bottom electrode of the capacitor was obtained with Ir/IrO2/Ir/Ti electrode, by crystallizing sol-gel PZT thin film using RTA (650°CC 30 sec.). Contact resistance for hole diameter of 0.72 μm was 19 Ω. It was observed by cross-sectional TEM that Ti silicide was formed at the interface, but there was not oxygen diffusion from PZT thin film. Fatigue property of the PZT thin film was improved by RTA compared with furnace annealed film (600°CC 60 min.). The absolute value of the remnant polarization was 13 μC/cm2 for both films, but it did not degrade until 108 cycles of switching for the film by RTA, while it degraded before 105 cycles for furnace annealed film.  相似文献   
24.
Spinning Water Atomization Process (SWAP), which was one of the rapid solidification processes, promised to produce coarse non-combustible magnesium alloy powder with 1–4 mm length, having fine α-Mg grains and Al2Ca intermetallic compounds. It had economical and safe benefits in producing coarse Mg alloy powders with very fine microstructures in the mass production process due to its extreme high solidification rate compared to the conventional atomization process. AMX602 (Mg–6%Al–0.5%Mn–2%Ca) powders were compacted at room temperature. Their green compacts with a relative density of about 85% were heated at 573–673 K for 300 s in Ar gas atmosphere, and immediately consolidated by hot extrusion. Microstructure observation and evaluation of mechanical properties of the extruded AMX602 alloys were carried out. The uniform and fine microstructures with grains less than 0.45–0.8 μm via dynamic recrystallization during hot extrusion were observed, and were much small compared to the extruded AMX602 alloy fabricated by using cast ingot. The extremely fine intermetallic compounds 200–500 nm diameter were uniformly distributed in the matrix of powder metallurgy (P/M) extruded alloys. These microstructures caused excellent mechanical properties of the wrought alloys. For example, in the case of AMX602 alloys extruded at 573 K, the tensile strength (TS) of 447 MPa, yield stress (YS) of 425 MPa and 9.6% elongation were obtained.  相似文献   
25.
The cavitation erosion resistance of P/M aluminum alloy sintered composite with AlN dispersoids, prepared via the in situ synthesis and the conventional premixing process, was evaluated by using a magnetostrictive-vibration type equipment. In situ synthesized AlN particles were effective for the improvement of the erosion resistance of the composite because of their good bonding with the aluminum matrix. The additive AlN by the premixing process were easily detached from the specimen surface due to the insufficient coherence with the matrix, and caused the poor resistance. The cavitation resistance also depended on the porosity of the sintered composite. The continuously opened pores accelerated the wear phenomena by the cavitation due to the high pressure attack on the primary particle boundaries of sintered materials in the collapse of the bubbles.  相似文献   
26.
小型直喷式柴油机喷雾特性的试验研究   总被引:15,自引:0,他引:15  
为了掌握喷雾的结构物特性,利用高速摄像装置和高压容器拍摄了喷雾的逆光图像,并研究了喷雾周围介质压力对喷雾贯穿距离、喷雾锥角以及蒸发等喷雾特性的影响。在液滴数密度较大的条件下,燃料液滴的蒸发速率传热过程和雾化质量的影响;喷射妆期喷雾的贯穿距离和贯穿速度几乎不受介质物影响;喷雾的贯穿跨离受喷油压力的影响不大,但随着喷油压力的提高,喷雾锥角增大,喷雾质量得到改善。  相似文献   
27.
The microstructure and mechanical properties of hot extruded Mg–Al–Mn–Ca alloy was investigated. Both rapid solidified powders and cast billets were extruded at 573, 623 and 673 K to optimize the processing conditions for obtaining better mechanical response. Powder was consolidated to prepare the extrusion billets using both cold compaction and Spark Plasma Sintering at 473 K. The tensile properties of the extruded alloy were then evaluated and correlated to the observed microstructure. The results show that the use of rapid solidified powder could lead to effective grain refinement, which in turn resulted in the improved mechanical response, especially compared to the extruded conventional cast material.  相似文献   
28.
Strip‐shaped W2B5 reinforced B4C ceramic composites were prepared via in situ reaction of boron(B)‐graphite(Gr)‐WC system by powder metallurgy (P/M). In order to study the effect of the graphite content on the properties of the as‐fabricated ceramic composites, the powder mixture of B‐Gr‐WC with various amounts of Gr powder were blended and consolidated by spark plasma sintering (SPS). The sintering parameters were shown as following: sintering pressure was set as 30 MPa; The three‐step sintering temperature was 1100‐1550‐1700°C and the duration time was set as 5‐5‐6 minutes, respectively. In situ formed strip‐shaped W2B5 particles were dispersed homogeneously in B4C matrix, which resulted in a remarkable improvement on the fracture toughness and mechanical properties. Appropriate 5vol% residual Gr in the composite shows positive effect on the mechanical properties which achieved an optimal counter‐balance of fracture toughness and hardness, the relative density was 99.8%, the Vickers hardness can reach 30.2 GPa, and the fracture toughness was 11.9 MPa·m1/2 when the sintering temperature was set at 1700°C.  相似文献   
29.
Electrochemical etching enables processing with an atomic-level accuracy, without deteriorating the physical properties of the workpiece; however, contamination of its surface with electrolytes is unavoidable. If it is possible to carry out electrochemical etching without using electrolytes, such a process will be applicable to electronic device manufacturing and precision nanoscale processing of semiconductor materials. In addition, this process does not require the use of chemicals, cleaning after processing or disposal of waste fluid, which results in a low-cost and environmentally friendly process. To develop an electrochemical etching process that does not require the use of electrolytes, we proposed a method in which a functional-group-modified electrode is used as the cathode. A carboxylated graphite electrode was prepared by treating a graphite electrode with sulfuric acid. Electrolysis of ultrapure water was carried out using the obtained electrode as a cathode. The results indicate that the electrolysis current obtained using the modified electrode is approximately six-fold that obtained using an unmodified electrode. Furthermore, we can etch a Cu surface conically in ultrapure water. The current efficiency increases by 70% at maximum, and the minimum current required for electrochemical etching decreases compared with that in the case of using an unmodified electrode.  相似文献   
30.
Microscale thin-film thermocouples (TFTCs), which can be fabricated using existing microelectronics technology on the surfaces of electronic de vices with film thicknesses as small as tens of angstroms, ha ve smaller thermoelectric potential compared to thick-film cases. The qualititati ve characteristics of TFTCs, which ha ve not yet been modeled successfully, ha ve been analyzed based on the model of distributed electric potential across the interface of two metals. The steady-state solution of the electron distribution and the electric potential distribution by solving the one-dimensional Schrodinger equation and the Poisson equation simultaneously show the decrease in the thermoeleectric potential quantitatively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号