首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94665篇
  免费   1255篇
  国内免费   458篇
电工技术   949篇
综合类   2342篇
化学工业   13063篇
金属工艺   4936篇
机械仪表   3308篇
建筑科学   2708篇
矿业工程   580篇
能源动力   1386篇
轻工业   4218篇
水利工程   1335篇
石油天然气   397篇
武器工业   4篇
无线电   10933篇
一般工业技术   17946篇
冶金工业   5093篇
原子能技术   338篇
自动化技术   26842篇
  2022年   103篇
  2021年   135篇
  2020年   98篇
  2019年   127篇
  2018年   14585篇
  2017年   13492篇
  2016年   10110篇
  2015年   765篇
  2014年   426篇
  2013年   771篇
  2012年   3587篇
  2011年   9918篇
  2010年   8609篇
  2009年   5992篇
  2008年   7274篇
  2007年   8255篇
  2006年   621篇
  2005年   1625篇
  2004年   1465篇
  2003年   1512篇
  2002年   810篇
  2001年   340篇
  2000年   443篇
  1999年   332篇
  1998年   609篇
  1997年   381篇
  1996年   327篇
  1995年   268篇
  1994年   200篇
  1993年   226篇
  1992年   178篇
  1991年   149篇
  1990年   122篇
  1989年   116篇
  1988年   120篇
  1987年   124篇
  1986年   119篇
  1985年   148篇
  1984年   98篇
  1983年   95篇
  1982年   113篇
  1981年   101篇
  1980年   79篇
  1979年   76篇
  1978年   79篇
  1977年   77篇
  1976年   94篇
  1975年   74篇
  1955年   70篇
  1954年   71篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Against general wisdom in crystallization,the nucleation of InP and Ⅲ-Ⅴ quantum dots (QDs) often dominates their growth.Systematic studies on InP QDs identified the key reason for this:the dense and tight alkanoate-ligand shell around each nanocrystal.Different strategies were explored to enable necessary ligand dynamics—i.e.,ligands rapidly switching between being bonded to and detached from a nanocrystal upon thermal agitation—on nanocrystals to simultaneously retain colloidal stability and allow appreciable growth.Among all the surface-activation reagents tested,2,4-diketones (such as acetylacetone) allowed the full growth of InP QDs with indium alkanoates and trimethylsilylphosphine as precursors.While small fatty acids (such as acetic acid) were partially active,common neutral ligands (such as fatty amines,organophosphines,and phosphine oxides) showed limited activation effects.The existing amine-based synthesis of InP QDs was activated by acetic acid formed in situ.Surface activation with common precursors enabled the growth of InP QDs with a distinguishable absorption peak between ~450 and 650 nm at mild temperatures (140-180 ℃).Furthermore,surface activation was generally applicable for InAs and Ⅲ-Ⅴ based core/shell QDs.  相似文献   
992.
Zou  Rui  Huang  Junjian  Shi  Junpeng  Huang  Lin  Zhang  Xuejie  Wong  Ka-Leung  Zhang  Hongwu  Jin  Dayong  Wang  Jing  Su  Qiang 《Nano Research》2017,10(6):2070-2082
Near-infrared (NIR) persistent-luminescence nanoparticles have emerged as a new class of background-free contrast agents that are promising for in vivo imaging.The next key roadblock is to establish a robust and controllable method for synthesizing monodisperse nanoparticles with high luminescence brightness and long persistent duration.Herein,we report a synthesis strategy involving the coating/etching of the SiO2 shell to obtain a new class of small NIR highly persistent luminescent ZnGa2O4∶Cr3+,Sn4+ (ZGOCS) nanoparticles.The optimized ZGOCS nanoparticles have an excellent size distribution of ~15 nm without any agglomeration and an NIR persistent luminescence that is enhanced by a factor of 13.5,owing to the key role of the SiO2 shell in preventing nanoparticle agglomeration after annealing.The ZGOCS nanoparticles have a signal-to-noise ratio ~3 times higher than that of previously reported ZnGa2O4∶Cr3+ (ZGC-1) nanoparticles as an NIR persistent-luminescence probe for in vivo bioimaging.Moreover,the persistent-luminescence signal from the ZGOCS nanoparticles can be repeatedly re-charged in situ with external excitation by a white lightemitting diode;thus,the nanoparticles are suitable for long-term in vivo imaging applications.Our study suggests an improved strategy for fabricating novel high-performance optical nanoparticles with good biocompatibility.  相似文献   
993.
Nanowires with inhomogeneous heterostructures such as polytypes and periodic twin boundaries are interesting due to their potential use as components for optical,electrical,and thermophysical applications.Additionally,the incorporation of metal impurities in semiconductor nanowires could substantially alter their electronic and optical properties.In this highlight article,we review our recent progress and understanding in the deliberate induction of imperfections,in terms of both twin boundaries and additional impurities in germanium nanowires for new/enhanced functionalities.The role of catalysts and catalyst-nanowire interfaces for the growth of engineered nanowires via a three-phase paradigm is explored.Three-phase bottom-up growth is a feasible way to incorporate and engineer imperfections such as crystal defects and impurities in semiconductor nanowires via catalyst and/or interfacial manipulation."Epitaxial defect transfer"process and catalyst-nanowire interfacial engineering are employed to induce twin defects parallel and perpendicular to the nanowire growth axis.By inducing and manipulating twin boundaries in the metal catalysts,twin formation and density are controlled in Ge nanowires.The formation of Ge polytypes is also observed in nanowires for the growth of highly dense lateral twin boundaries.Additionally,metal impurity in the form of Sn is injected and engineered via third-party metal catalysts resulting in above-equilibrium incorporation of Sn adatoms in Ge nanowires.Sn impurities are precipitated into Ge bi-layers during Ge nanowire growth,where the impurity Sn atoms become trapped with the deposition of successive layers,thus giving an extraordinary Sn content (>6 at.%) in Ge nanowires.A larger amount of Sn impingement (>9 at.%) is further encouraged by utilizing the eutectic solubility of Sn in Ge along with impurity trapping.  相似文献   
994.
Thermoelectric materials,which can convert waste heat into electricity,have received increasing research interest in recent years.This paper describes the recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures.We start our discussion with the strategies of improving the power factor of a given material by using nanoheterostructures.Then we discuss the methods of decreasing thermal conductivity.Finally,we highlight a way of decoupling power factor and thermal conductivity,namely,incorporating phase-transition materials into a nanowire heterostructure.We have explored the lead telluride-copper telluride thermoelectric nanowire heterostructure in this work.Future possible ways to improve the figure of merit are discussed at the end of this paper.  相似文献   
995.
High-performance multiphoton-pumped lasers based on cesium lead halide perovskite nanostructures are promising for nonlinear optics and practical frequency upconversion devices in integrated photonics.However,the performance of such lasers is highly dependent on the quality of the material and cavity,which makes their fabrication challenging.Herein,we demonstrate that cesium lead halide perovskite triangular nanorods fabricated via vapor methods can serve as gain media and effective cavities for multiphoton-pumped lasers.We observed blue-shifts of the lasing modes in the excitation fluence-dependent lasing spectra at increased excitation powers,which fits well with the dynamics of Burstein-Moss shifts caused by the band filling effect.Moreover,efficient multiphoton lasing in CsPbBr3 nanorods can be realized in a wide excitation wavelength range (700-1,400 nm).The dynamics of multiphoton lasing were investigated by time-resolved photoluminescence spectroscopy,which indicated that an electron-hole plasma is responsible for the multiphoton-pumped lasing.This work could lead to new opportunities and applications for cesium lead halide perovskite nanostructures in frequency upconversion lasing devices and optical interconnect systems.  相似文献   
996.
Silicon is considered an exceptionally promising alternative to the most commonly used material, graphite, as an anode for next-generation lithium-ion batteries, as it has high energy density owing to its high theoretical capacity and abundant storage. Here, microsized walnut-like porous silicon/reduced graphene oxide (P-Si/rGO) core–shell composites are successfully prepared via in situ reduction followed by a dealloying process. The composites show specific capacities of more than 2,100 mAh·g?1 at a current density of 1,000 mA·g?1, 1,600 mAh·g?1 at 2,000 mA·g?1, 1,500 mAh·g?1 at 3,000 mA·g?1, 1,200 mAh·g?1 at 4,000 mA·g?1, and 950 mAh·g?1 at 5,000 mA·g?1, and maintain a value of 1,258 mAh·g?1 after 300 cycles at a current density of 1,000 mA·g?1. Their excellent rate performance and cycling stability can be attributed to the unique structural design: 1) The graphene shell dramatically improves the conductivity and stabilizes the solid–electrolyte interface layers; 2) the inner porous structure supplies sufficient space for silicon expansion; 3) the nanostructure of silicon can prevent the pulverization resulting from volume expansion stress. Notably, this in situ reduction method can be applied as a universal formula to coat graphene on almost all types of metals and alloys of various sizes, shapes, and compositions without adding any reagents to afford energy storage materials, graphene-based catalytic materials, graphene-enhanced composites, etc.
  相似文献   
997.
It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers.In this paper,two hexagonal microteeth with varied nanoscaled air-gaps of a ZnO microcomb are used to construct coupled whispering-gallery cavities.This is done to achieve a stable single mode lasing based on Vernier effect without requiring any complicated or sophisticated manipulation to achieve positioning with nanoscale precision.Optical gain and the corresponding ultraviolet lasing performance were improved greatly through coupling with localized surface plasmons of Pt nanoparticles.The ZnO/Pt hybrid microcavities achieved a seven-fold enhancement of intensity of single mode lasing with higher sidemode suppression ratio and lower threshold.The mechanism that led to this enhancement has been described in detail.  相似文献   
998.
Zinc oxide nanoparticles (ZnO NPs),as a new type of pH-sensitive drug carrier,have received much attention.ZnO NPs are stable at physiological pH,but can dissolve quickly in the acidic tumor environment (pH < 6) to generate cytotoxic zinc ions and reactive oxygen species (ROS).However,the protein corona usually causes the non-specific degradation of ZnO NPs,which has limited their application considerably.Herein,a new type of pH-sensitive nanoreactor (ZnO-DOX@F-mSiO2-FA),aimed at reducing the non-specific degradation of ZnO NPs,is presented.In the acidic tumor environment (pH < 6),it can release cytotoxic zinc ions,ROS,and anticancer drugs to kill cancer cells effectively.In addition,the fluorescence emitted from fluorescein isothiocyanate (FITC)-labeled mesoporous silica (F-mSiO2) and doxorubicin (DOX) can be used to monitor the release behavior of the anticancer drug.This report provides a new method to avoid the non-specific degradation of ZnO NPs,resulting in synergetic therapy by taking advantage of ZnO NPs-induced oxidative stress and targeted drug release.  相似文献   
999.
Light management and electrical isolation are essential for the majority of optoelectronic nanowire (NW) devices.Here,we present a cost-effective technique,based on vapor-phase deposition of parylene-C and subsequent annealing,that provides conformal encapsulation,anti-reflective coating,improved optical properties,and electrical insulation for GaAs nanowires.The process presented allows facile encapsulation and insulation that is suitable for any nanowire structure.In particular,the parylene-C encapsulation functions as an efficient antireflection coating for the nanowires,with reflectivity down to <1% in the visible spectrum.Furthermore,the parylene-C coating increases photoluminescence intensity,suggesting improved light guiding to the NWs.Finally,based on this process,a NW LED was fabricated,which showed good diode performance and a clear electroluminescence signal.We believe the process can expand the fabrication possibilities and improve the performance of optoelectronic nanowire devices.  相似文献   
1000.
Lead-free (K0.5Na0.5)(Nb1-xGe x )O3 (KNN-xGe, where x = 0-0.01) piezoelectric ceramics were prepared by conventional ceramic processing. The effects of Ge4+ cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nb5+ ions as acceptors, and the Curie temperature (TC) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN-xGe ceramics was 1020°C. Ge4+ doping less than 0.4 mol.%can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN-xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d33 = 120 pC/N, planar electromechanical coupling coefficient kp = 34.7%, mechanical quality factor Qm = 130, and tanδ = 3.6%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号