首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   6篇
化学工业   10篇
金属工艺   5篇
建筑科学   5篇
能源动力   3篇
轻工业   19篇
水利工程   1篇
无线电   3篇
一般工业技术   35篇
冶金工业   16篇
自动化技术   4篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   5篇
  2013年   5篇
  2012年   11篇
  2011年   18篇
  2010年   7篇
  2009年   7篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2000年   1篇
  1996年   1篇
排序方式: 共有101条查询结果,搜索用时 75 毫秒
71.
The aquatic photochemical behavior of a class of sulfa drugs containing six-membered heterocyclic substituents (sulfamethazine, sulfamerazine, sulfadiazine, sulfachloropyridazine, and sulfadimethoxine) was investigated. Photodegradation of the sulfa drugs in a natural water sample was significantly enhanced relative to the degradation in deionized water, with the exception of sulfadimethoxine. This indicated an indirect photochemical process that was identified through the use of quenchers to be attributable to interaction with triplet excited-state dissolved organic matter (3DOM). The direct photolysis rate constant and quantum yield for both the neutral and anionic species of each sulfa drug were calculated using matrix deconvolution methods. The quantum yield values range from 0.01 x 10(-3) for the neutral form of sulfadimethoxine to 5 x 10(-3) for the anionic form of sulfamethazine and are significantly lower than those observed in a previous study for sulfa drugs containing five-membered heterocyclic substituents, although the rate constants are of similar magnitude. The primary product formed in both direct and indirect photodegradation for all five compounds was identified as a sulfur dioxide extrusion product. The predicted environmental half-lives solely attributable to direct photolysis range from 8.6 h in midsummer at 30 degrees latitude in pH 7 surface water for sulfachloropyridazine to 420 h in midwinter at 45 degrees in pH 7 surface water for sulfadimethoxine. These half-lives, except for sulfadimethoxine, will be decreased by interaction with 3DOM.  相似文献   
72.
In fire models, the accurate prediction of aerosol and soot concentrations in the gas phase and their deposition thicknesses in the condensed phase is important for a wide range of applications, including human egress calculations, heat transfer in compartment fires, and forensic reconstructions. During a fire, in addition to soot transport by advection and diffusion, a significant amount of soot can be deposited on surfaces due to various mechanisms. As a first approach of quantifying aerosol deposition predictions under non-reacting flow conditions, this study identifies important parameters under various flow conditions and compares predicted aerosol deposition quantities to experimentally measured data. The computational tool used in this study was the computational fluid dynamics code, Fire Dynamics Simulator (FDS). Model predictions are compared to measured deposition velocities for various sizes of monodisperse fluorescent particles and various air velocities at the ceiling, wall, and floor of a ventilation duct.  相似文献   
73.
Aquatic photochemistry of nitrofuran antibiotics   总被引:4,自引:0,他引:4  
The aquatic photochemical degradation of a class of pharmaceuticals known as the nitrofuran antibiotics (furaltadone, furazolidone, and nitrofurantoin) was investigated. Direct photolysis is the dominant photodegradation pathway for these compounds with the formation of a photostationary state between the syn and the anti isomers occurring during the first minutes of photolysis. The direct photolysis rate constant and quantum yield were calculated for each of the three nitrofurans. Reaction rate constants with reactive oxygen species (ROS), 102 and *OH, were also measured, and half-lives were calculated using environmentally relevant ROS concentrations. Half-lives calculated for reaction with 1O2 and *OH are in the ranges of 120-1900 and 74-82 h, respectively. When compared to the direct photolysis half-lives, 0.080-0.44 h in mid-summer at 45 degrees N latitude, it is clear that indirect photochemical processes cannot compete with direct photolysis. The major photodegradation product of the nitrofurans was found to be nitrofuraldehyde, which is also photolabile. Upon photolysis, nitrofuraldehyde produces NO, which is easily oxidized to nitrous acid. The acid produced further catalyzes the photodegradation of the parent nitrofuran antibiotics, leading to autocatalytic behavior. Natural waters were found to buffer the acid formation.  相似文献   
74.
Stitching of laminated composites is a proven way to improve damage tolerance and increase interlaminar fracture toughness. However, the size and shape of various composite parts manufactured across many industries has limited possible applications of stitching. Innovative one-sided stitching techniques incorporating inclined stitches have emerged to overcome these limitations.Models for determining traction laws for individual stitches including inclined stitches have progress over the years but with limitations. A model for analysing a stitch, pin or other through-thickness reinforcement in a composite laminate has been developed and validated with finite element analysis (FEA). This model is formulated based on treating the stitch as a rope supported by a plastic foundation, with pull-out resisted by frictional stresses. A new approach was taken to determine the displacement by integrating the function describing the shape of the stitch. The model accurately predicts the traction law of a stitch and is most accurate for cases where μ and θ0 are small. This model can be incorporated with FEA to simulate the delamination of laminates. This reduces the need for expensive experimental testing and allows for the most effective stitching parameters to be determined, resulting in optimal design.  相似文献   
75.
The role of photochemically generated singlet oxygen (1O2) in the DOM-sensitized degradation of eighteen dissolved free amino acids was investigated. The fraction of total sensitized degradation due to reaction with 1O2 was determined through a kinetic analysis based on a measured reaction rate constant for each amino acid coupled with measured 1O2 concentrations and was confirmed through quenching experiments. Only four of the eighteen free amino acid residues examined were found to be photolabile under environmentally relevant conditions: histidine, methionine, tyrosine, and tryptophan. The fraction of Suwannee River Humic Acid (SRHA)-sensitized degradation due to reaction with 1O2 ranged from an upper value of 110 +/- 10% for histidine to 8 +/- 1% for tryptophan, with 26 +/- 3% contribution for methionine and 33 +/- 4% for tyrosine. In addition to degradation through reaction with 1O2, other reactive intermediates involved in the SRHA-photosensitized degradation of these amino acids were identified. Methionine was thought to be additionally degraded through reaction with H2O2 and triplet excited-state DOM, and 67% of tyrosine's indirect photodegradation was assigned to an oxygen-dependent type I photooxidation reaction. The majority of tryptophan indirect degradation was due to reaction with 3DOM. Photodegradation experiments with various DOM sources including Pony Lake (Antarctica) fulvic acid and a synthetic estuarine sample, as well as Minnesota freshwater samples (lakes Itasca, Superior, Josephine, and the St Louis River), demonstrated distinct reactivity patterns, indicating that DOM's 1O2-generation efficiency is not strongly coupled to its ability to promote other photooxidation pathways. These four amino acids highlightthe differential photoreactivity of DOM from various sources.  相似文献   
76.
The chip-scale integration of optical components is crucial for technologies as diverse as optical communications, optoelectronics displays, and photovoltaics. However, the realization of integrated optical devices from discrete components is often hampered by the lack of a universal substrate for achieving monolithic integration and by incompatibilities between materials. Emergent technologies such as chip-scale biophotonics, organic optoelectronics, and optofluidics present a host of new challenges for optical device integration, which cannot be solved with existing bonding techniques. Here, we report a new method for substrate independent integration of dissimilar optical components by way of biological recognition-directed assembly. Bonding in this scheme is achieved by locally modifying the substrate with a protein receptor and the optical component with a biomolecular ligand or vice versa. The key features of this new technology include substrate independent assembly, cross-platform vertical scale integration, and selective registration of components based on complementary biomolecular interactions.  相似文献   
77.
78.
The environmental photochemical kinetics of the antibiotic compound tetracycline were investigated. The aqueous speciation of tetracycline over a range of natural pH and water hardness values is dominated by association with Ca2+ and Mg2+ ions. The association constants necessary to calculate tetracycline aqueous speciation given knowledge of pH, [Ca2+], and [Mg2+] were measured by spectrophotometric titrations and matrix deconvolution of a series of UV-vis absorption spectra into individual component species. A series of photolysis experiments was performed under simulated sunlight, and quantum yields for the solar photolysis of each environmentally relevant species were calculated. The results indicate that the pseudo-first-order rate constant for tetracycline photolysis at varied Mg2+ and Ca2+ concentrations relevant to natural conditions can vary by up to an order of magnitude. A self-sensitization effect was observed and was accounted for by varying the initial tetracycline concentration under each set of photolysis conditions.  相似文献   
79.
Grain refinement through surface plastic deformation processes such as surface mechanical attrition treatment has shown measureable benefits for mechanical properties, but the impact on corrosion behavior has been inconsistent. Many factors obfuscate the particular corrosion mechanisms at work, including grain size, but also texture, processing contamination, and surface roughness. Many studies attempting to link corrosion and grain size have not been able to decouple these effects. Here we introduce a preprocessing step to mitigate the surface contamination effects that have been a concern in previous corrosion studies on plastically deformed surfaces; this allows comparison of corrosion behavior across grain sizes while controlling for texture and surface roughness. Potentiodynamic polarization in aqueous NaCl solution suggests that different corrosion mechanisms are responsible for samples prepared with the preprocessing step.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号