首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   4篇
化学工业   16篇
机械仪表   2篇
建筑科学   1篇
能源动力   5篇
轻工业   5篇
无线电   17篇
一般工业技术   20篇
冶金工业   14篇
自动化技术   35篇
  2023年   1篇
  2022年   2篇
  2021年   17篇
  2020年   6篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   9篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1984年   3篇
  1982年   1篇
  1968年   1篇
排序方式: 共有115条查询结果,搜索用时 62 毫秒
11.
Loke D  Shi L  Wang W  Zhao R  Yang H  Ng LT  Lim KG  Chong TC  Yeo YC 《Nanotechnology》2011,22(25):254019
Phase-change random access memory cells with superlattice-like (SLL) GeTe/Sb(2)Te(3) were demonstrated to have excellent scaling performance in terms of switching speed and operating voltage. In this study, the correlations between the cell size, switching speed and operating voltage of the SLL cells were identified and investigated. We found that small SLL cells can achieve faster switching speed and lower operating voltage compared to the large SLL cells. Fast amorphization and crystallization of 300 ps and 1 ns were achieved in the 40 nm SLL cells, respectively, both significantly faster than those observed in the Ge(2)Sb(2)Te(5) (GST) cells of the same cell size. 40 nm SLL cells were found to switch with low amorphization voltage of 0.9 V when pulse-widths of 5 ns were employed, which is much lower than the 1.6 V required by the GST cells of the same cell size. These effects can be attributed to the fast heterogeneous crystallization, low thermal conductivity and high resistivity of the SLL structures. Nanoscale PCRAM with SLL structure promises applications in high speed and low power memory devices.  相似文献   
12.
We quantified the drift of Cu ions into various PECVD dielectrics by measuring shifts in capacitance-voltage behavior after subjecting Cu-gate MOS capacitors to bias-temperature stress. At a field of 1.0 MV/cm and temperature of 100°C, Cu ions drift readily into PECVD oxide with a projected accumulation of 2.7×1013 ions/cm 2 after 10 years. However, in PECVD oxynitride, the projected accumulation under the same conditions is only 2.3×1010 ions/cm2. These findings demonstrate the necessity of integrating drift barriers, such as PECVD oxynitride layers, in Cu interconnection systems to ensure threshold stability of parasitic field n-MOS devices  相似文献   
13.
We present a holistic approach to estimation that uses rough sets theory to determine a similarity template and then compute a runtime estimate using identified similar applications. We tested the technique in two real-life data-intensive applications: data mining and high-performance computing.  相似文献   
14.
15.
We present a novel, inexpensive, and fast microimpedance tomography system for two-dimensional imaging of cell and tissue cultures. The system is based on four-electrode measurements using 16 planar microelectrodes (5 microm x 4 mm) integrated into a culture chamber. An Agilent 4294A impedance analyzer combined with a front-end amplifier is used for the impedance measurements. Two-dimensional images are obtained using a reconstruction algorithm. This system is capable of accurately resolving the shape and position of a human hair, yielding vertical cross sections of the object. Human epithelial stem cells (YF 29) are also grown directly on the device surface. Tissue growth can be followed over several days. A rapid resistivity decrease caused by permeabilized cell membranes is also monitored, suggesting that this technique can be used in electroporation studies.  相似文献   
16.
Biofuel has emerged as an alternative source of energy to reduce the emissions of greenhouse gases in the atmosphere and combat global warming. Biofuels are classified into first, second, third and fourth generations. Each of the biofuel generations aims to meet the global energy demand while minimizing environmental impacts. Sustainability is defined as meeting the needs of the current generations without jeopardizing the needs of future generations. The aim of sustainability is to ensure continuous growth of the economy while protecting the environment and societal needs. Thus, this paper aims to evaluate the sustainability of these four generations of biofuels. The objectives are to compare the production of biofuel, the net greenhouse gases emissions, and energy efficiency. This study is important in providing information for the policymakers and researchers in the decision-making for the future development of green energy. Each of the biofuel generations shows different benefits and drawbacks. From this study, we conclude that the first generation biofuel has the highest biofuel production and energy efficiency, but is less effective in meeting the goal of reducing the greenhouse gases emission. The third generation biofuel shows the lowest net greenhouse gases emissions, allowing the reduction of greenhouse gases in the atmosphere. However, the energy required for the processing of the third generation biofuel is higher and, this makes it less environmentally friendly as fossil fuels are used to generate electricity. The third and fourth generation feedstocks are the potential sustainable source for the future production of biofuel. However, more studies need to be done to find an alternative low cost for biofuel production while increasing energy efficiency.  相似文献   
17.
With the increasing demand and depleting trend of commercial energies, it has forced the researchers all over the world to accelerate research and development in the area of renewable energy. Currently, unique and interesting features of binary compounds have gained more attention by researchers, and it became a favourite research topic among various groups of researchers around this world. It was noticed that strontium titanate (SrTiO3) consists of several extraordinary properties that can apply for miscellaneous applications especially for energy storage, fuel cells, as well as to generate hydrogen fuel via photocatalysis process. Besides that, it was noticed that SrTiO3 can be synthesised in different pathways. The method of preparation and amount of precursors can affect the surface properties of SrTiO3. Thus, this article presents a critical review on how SrTiO3 synthesis methods affect its surface morphology and the applications of SrTiO3 in various fields.  相似文献   
18.
Fiber drawing enables scalable fabrication of multifunctional flexible fibers that integrate electrical, optical, and microfluidic modalities to record and modulate neural activity. Constraints on thermomechanical properties of materials, however, have prevented integrated drawing of metal electrodes with low-loss polymer waveguides for concurrent electrical recording and optical neuromodulation. Here, two fabrication approaches are introduced: 1) an iterative thermal drawing with a soft, low melting temperature (Tm) metal indium, and 2) a metal convergence drawing with traditionally non-drawable high Tm metal tungsten. Both approaches deliver multifunctional flexible neural interfaces with low-impedance metallic electrodes and low-loss waveguides, capable of recording optically-evoked and spontaneous neural activity in mice over several weeks. These fibers are coupled with a light-weight mechanical microdrive (1 g) that enables depth-specific interrogation of neural circuits in mice following chronic implantation. Finally, the compatibility of these fibers with magnetic resonance imaging is demonstrated and they are applied to visualize the delivery of chemical payloads through the integrated channels in real time. Together, these advances expand the domains of application of the fiber-based neural probes in neuroscience and neuroengineering.  相似文献   
19.
Even though microalgae are able to produce various valuable metabolites, microalgal culture on an industrial scale still faces challenging difficulties. Open systems may be cheaper to construct, easier to operate and maintain, and possess greater surface area to volume ratio, but they are also easily contaminated, have high water loss due to evaporation, and suffer from unfavorable weather. On the other hand, closed photobioreactor systems possess higher biomass yields, better control over culture parameters, and lower contamination risks. However, photobioreactors are costlier to construct and maintain. Thus, a hybrid semi-closed thin layer cascade photobioreactor was proposed to cultivate high-density microalgal cultures for biodiesel production. Computational fluid dynamics analysis was carried out to observe fluid behavior in the hybrid photobioreactor design. The simulation results showed satisfactory performance in the improved design, making the photobioreactor a potential candidate for microalgal biodiesel production.  相似文献   
20.
Clean Technologies and Environmental Policy - The cathodic microalgae-based MFC converts the nutrients within wastewater and produces oxygen as oxygen supply for cathodic reactions, leading to the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号