Plug flow fluid bed dryers (PFFBD) have been used for drying of particulate solids such as salts, ion exchange resins, grains, and a variety of other products. The present article describes the use of a mathematical model for the scale-up of lab-scale batch fluidization data to design an industrial-scale PFFBD. Axial dispersion theory was used in conjunction with the tanks-in-series model to describe the non-ideal flow. The model was implemented in Matlab 6.5 and it can be used for easily fluidizing particulate materials. The proposed model is capable of analyzing both the exponential falling rate and constant rate drying periods. The model predicts the required dryer dimensions for a given throughput and desired final moisture content. The model can also be used to study the effect of different process parameters such as solids feed rate, inlet air velocity, and temperature on the required dryer dimensions and it can also be used to predict the moisture and temperature profiles along the length of the PFFBD. 相似文献
At the Keck Smart Materials Integration Laboratory at Penn State University, low-temperature co-fired ceramic (LTCC) material systems have been used to fabricate a number of devices for a variety of applications. This article presents an overview of the integration of the concepts and materials that we have used to achieve miniaturization and unique device function. Examples of microwave filters, metamaterial antennas, and a dielectrophoretic cell sorter will be presented, with emphasis on device modeling and design, prototype construction methods, and test results. 相似文献
The cardiovascular disease of atherosclerosis is characterised by aged vascular smooth muscle cells and compromised cell survival. Analysis of human and murine plaques highlights markers of DNA damage such as p53, Ataxia telangiectasia mutated (ATM), and defects in mitochondrial oxidative metabolism as significant observations. The antiageing protein Klotho could prolong VSMC survival in the atherosclerotic plaque and delay the consequences of plaque rupture by improving VSMC phenotype to delay heart attacks and stroke. Comparing wild-type VSMCs from an ApoE model of atherosclerosis with a flox’d Pink1 knockout of inducible mitochondrial dysfunction we show WT Pink1 is essential for normal cell viability, while Klotho mediates energetic switching which may preserve cell survival. Methods: Wild-type ApoE VSMCs were screened to identify potential drug candidates that could improve longevity without inducing cytotoxicity. The central regulator of cell metabolism AMP Kinase was used as a readout of energy homeostasis. Functional energetic switching between oxidative and glycolytic metabolism was assessed using XF24 technology. Live cell imaging was then used as a functional readout for the WT drug response, compared with Pink1 (phosphatase-and-tensin-homolog (PTEN)-induced kinase-1) knockout cells. Results: Candidate drugs were assessed to induce pACC, pAMPK, and pLKB1 before selecting Klotho for its improved ability to perform energetic switching. Klotho mediated an inverse dose-dependent effect and was able to switch between oxidative and glycolytic metabolism. Klotho mediated improved glycolytic energetics in wild-type cells which were not present in Pink1 knockout cells that model mitochondrial dysfunction. Klotho improved WT cell survival and migration, increasing proliferation and decreasing necrosis independent of effects on apoptosis. Conclusions: Klotho plays an important role in VSMC energetics which requires Pink1 to mediate energetic switching between oxidative and glycolytic metabolism. Klotho improved VSMC phenotype and, if targeted to the plaque early in the disease, could be a useful strategy to delay the effects of plaque ageing and improve VSMC survival. 相似文献
The production of a polymer containing basic functional groups via the reactive processing of polyethylene was investigated. Grafting of dimethylamino ethyl methacrylate, DMAEMA, to linear low-density polyethylene in the melt was carried out, and the effects of initiator type, feed composition, and reaction time and temperature were studied. The extent of grafting was determined by Fourier transform infrared and 1H nuclear magnetic resonance spectroscopy, and the degree of cross-linking was observed by measuring the products' melt indices. Thermal stability of the product was investigated using differential scanning calorimetry. Materials containing up to 3 wt% of grafted DMAEMA were prepared. The choice of appropriate feed compositions and reaction conditions allows the production of a material containing the maximum amount of grafted DMAEMA, while minimizing cross-linking. The grafted polyethylene produced under these conditions is more stable than the starting material, suggesting an antioxidant effect of the grafted moieties. The functional polymer produced should be of interest for the preparation of polymer blends with acidic polymers by virtue of the miscibility enhancement that could occur as compared with the hydrocarbon precursor. 相似文献
Rate constants for the base-catalyzed hydrolysis of sucrose laurate, sucrose α-sulfonyl laurate, and sucrose α-ethyl laurate
were measured at several temperatures in pH 11 buffer. Activation energies and Arrhenius factors for the hydrolysis reactions
were determined. At 27°C, sucrose laurate hydrolyzed fastest and sucrose α-ethyl laurate slowest. Activation energies and
Arrhenius factors showed that both steric and electronic factors affect the rates of ester hydrolysis. Other work has shown
that bacterial hydrolysis of sugar fatty acid esters is inhibited in the presence of either α-sulfonyl or α-alkyl groups.
A kinetic study of base-catalyzed ester hydrolysis has revealed reasons for the inhibition of bacterial hydrolysis and provided
information regarding ester stability at elevated pH. 相似文献
Ultimate aerobic biodegradabilities of an array of sugar ester surfactants were determined by International Standards Organisation
method 7827, “Water Quality—Evaluation in an Aqueous Medium of the Aerobic Biodegradability of Organic Compounds, Method by
Dissolved Organic Carbon” (1984). The surfactants were nonionic sugar esters with different-sized sugar head groups (formed
from glucose, sucrose, or raffinose) and different lengths and numbers of alkyl chains [formed from lauric (C12) or palmitic (C16) acid]. Analogous anionic sugar ester surfactants, formed by attaching an α-sulfonyl group adjacent to the ester bond, and
sugar esters with α-alkyl substituents were also studied. It was found that variations in sugar head group size or in alkyl
chain length and number do not significantly affect biodegradability. In contrast, the biodegradation rate of sugar esters
with α-sulfonyl or α-alkyl groups, although sufficient for them to be classified as readily biodegradable, was dramatically
reduced compared to that of the unsubstituted sugar esters. An understanding of the relationship between structure and biodegradability
provided by the results of this study will aid the targeted design of readily biodegradable sugar ester surfactants for use
in consumer products. 相似文献
Insect olfactory systems present models to study interactions between animal genomes and the environment. They have evolved for fast processing of specific odorant blends and for general chemical monitoring. Here, we review molecular and physiological mechanisms in the context of the ecology of chemical signals. Different classes of olfactory receptor neurons (ORNs) detect volatile chemicals with various degrees of specialization. Their sensitivities are determined by an insect-specific family of receptor genes along with other accessory proteins. Whereas moth pheromones are detected by highly specialized neurons, many insects share sensitivities to chemical signals from microbial processes and plant secondary metabolism. We promote a more integrated research approach that links molecular physiology of receptor neurons to the ecology of odorants. 相似文献
This paper reports on the structural, mechanical and tribological properties of molybdenum–copper nanocomposite films ‘doped’ with small amounts of nitrogen, which contain either no nitride phase (i.e. the nitrogen is held in interstitial solid solution, mainly in molybdenum) or small amounts of lower nitrides (i.e. Mo2N). All films were deposited on Si wafers, AISI M2 high speed steel and AISI 316 stainless steel by reactive sputtering using a hot-filament-enhanced dc unbalanced magnetron system. A systematic approach was adopted to investigate the evolution of metal/metal and ceramic/metal phase combinations with increasing nitrogen content (up to 40 at.% N) in the film. Coating composition and microstructure were determined by cross-sectional TEM, SEM and XPS. XRD was used to identify (where possible) metallic and metal-nitride phases. Mechanical properties such as hardness and elastic modulus were determined by low load Knoop and instrumented Vickers indentation measurements. Reciprocating sliding, micro-abrasion and impact tests were performed to assess tribological performance.
It was found that increasing the nitrogen gas flow rate from 0 to 15 sccm (and therefore nitrogen content in the film from 0 to 24 at.% N), refined significantly the coating microstructure from columnar to a dense and more equiaxed morphology, increasing the hardness whilst maintaining (almost constant) elastic modulus values, close to that of molybdenum metal. Further increases in the nitrogen gas flow rate resulted in films that appeared to contain significant fractions of the Mo2N ceramic phase. SEM and cross-sectional TEM analyses of the film deposited at a nitrogen flow rate of 20 sccm (containing 36 at.% N) demonstrated a microstructure consisting of 50–100 nm wide columns, which contain small regions of contrast in dark-field images, of the order of 3–5 nm wide. A maximum hardness of 32 GPa and the highest hardness/modulus ratio was however found in the (predominantly metallic) film deposited at a nitrogen gas flow rate of 15 sccm. This film also performed best in both micro-abrasion and impact wear tests; in contrast, the ‘ceramic’ film (deposited at 20 sccm nitrogen flow rate) performed better in reciprocating sliding wear. 相似文献