首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5066篇
  免费   97篇
  国内免费   18篇
电工技术   55篇
综合类   16篇
化学工业   675篇
金属工艺   48篇
机械仪表   66篇
建筑科学   50篇
矿业工程   3篇
能源动力   139篇
轻工业   281篇
水利工程   19篇
石油天然气   14篇
无线电   319篇
一般工业技术   599篇
冶金工业   2491篇
原子能技术   25篇
自动化技术   381篇
  2023年   30篇
  2022年   66篇
  2021年   114篇
  2020年   77篇
  2019年   78篇
  2018年   94篇
  2017年   81篇
  2016年   98篇
  2015年   52篇
  2014年   94篇
  2013年   166篇
  2012年   126篇
  2011年   154篇
  2010年   117篇
  2009年   100篇
  2008年   117篇
  2007年   114篇
  2006年   96篇
  2005年   89篇
  2004年   59篇
  2003年   63篇
  2002年   49篇
  2001年   28篇
  2000年   43篇
  1999年   95篇
  1998年   781篇
  1997年   467篇
  1996年   305篇
  1995年   208篇
  1994年   171篇
  1993年   187篇
  1992年   59篇
  1991年   66篇
  1990年   52篇
  1989年   55篇
  1988年   50篇
  1987年   38篇
  1986年   44篇
  1985年   50篇
  1984年   33篇
  1983年   16篇
  1982年   28篇
  1981年   33篇
  1980年   39篇
  1978年   22篇
  1977年   62篇
  1976年   113篇
  1975年   16篇
  1974年   20篇
  1972年   13篇
排序方式: 共有5181条查询结果,搜索用时 15 毫秒
101.
The development of safe drug carriers is cardinal in cancer therapy, which can target the cancer cells and release the loaded drug on-demand without damaging the healthy cells of the body. In our work, we synthesized three different biodegradable polymers, poly[(ethyl aminobezoate) (ethyl glycinato) phosphazenes] (PABGPs), in different mole ratio of side groups. The successful synthesis of these PABGPs was confirmed by 1H NMR, 31P NMR, FT-IR, and gel permeation chromatography. These PABGPs were fabricated into drug (camptothecin, CPT, a hydrophobic anticancer drug) loaded nanoparticles. These drug-loaded nanoparticles showed good drug release behaviors under normal physiological conditions (pH 7.4 and temperature 37°C). These PABGPs-based nanoparticles may find their application as effective drug carriers for cancer therapy.  相似文献   
102.
A facile and eco-friendly synthesis of polypyrrole from monomer pyrrole using nominal amount of ferric chloride hexahydrate (FeCl3.6H2O) oxidant in aqueous solution by chemically oxidative polymerization method has been reported. The use of aqueous solvent and ferric chloride hexahydrate salt in polypyrrole synthesis have an eco-friendly route favorable for the production of polypyrrole in large quantities. The synthesized polypyrrole samples exhibit good electrical conductivity (2 S/cm) and yield of 80% for reaction time of 8 hr at 5°C. Quality and properties of polypyrrole samples have been thoroughly investigated with varying reaction time and temperature while other synthesis parameters like molar ratio of oxidant to monomer, oxidant concentration, and solvent were kept constant. X-ray diffraction analysis of polypyrrole with a shorter reaction time shows the presence of iron oxide (Fe2O3) peaks. The complete reaction may not occur at shorter reaction times due to which residual ferric ions converted into Fe2O3. X-ray photoelectron spectroscopy measurement of polypyrrole also confirms the formation of Fe2O3. Appropriate selection of reaction time and temperature produced pure phase polypyrrole with high yield and good conductivity. Synthesized polypyrrole by our eco-friendly and cost-effective technique exhibits prominent electromagnetic shielding effectiveness value of 30 dB in the X-band (8–12 GHz).  相似文献   
103.
ABSTRACT

A new composite of crystalline silicotitanate (CST) has been synthesized for the sequestration of Cs and Sr from low-level liquid waste generated in the nuclear industry. The product characterization using X-RAY DEFRACTION (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of CST crystals in the composite. Sorption studies carried out under various test conditions showed that the composite has high affinity for both Cs and Sr. Results of structural characterization of Cs and Sr-loaded CST indicated that the overall structural integrity remained intact after substitution of Na+ by Cs+ or Sr2+. The exceedingly good Cs and Sr sorption performance displayed by the CST composite will find applications in the treatment of nuclear waste.  相似文献   
104.
ABSTRACT

Fabrication of electronic materials from nanocomposite of biopolyesters reinforced with carbon nanotubes can be regarded as the effective alternative for conventional nanocomposites consisting of non-biodegradable polymers. Commercial availability of biopolyester-based nanocomposites is limited because of their high cost compared to other polymers, but the factor of their compostable nature is worthless for environmental protection. Such nanocomposites have potential applications in biodegradable sensors, EMI materials, etc. In this review, the current progress of biopolyester/CNTs nanocomposites in the field of biodegradable electronics is reviewed and also the impact of CNTs dispersion on electrical, thermal and mechanical properties of eco composites is stipulated.  相似文献   
105.
Nonionic surfactants are highly stable and cost-effective and receiving acceptance for applications in many diverse fields including drug delivery, due to their distinctive properties. Here, we report on the synthesis and characterization of sulfanilamide-based nonionic surfactants for nanoscale vesicular drug loading applications. Nonionic surfactants were synthesized through alkylation of sulfanilamide with alkyl halides that possessed diverse degrees of lipophilicity. They were explored for their nanovesicular drug loading with Cefixime as a hydrophobic model drug. Drug-loaded nanovesicles were characterized for surface morphologies, size, size distribution, surface charge, and drug loading efficiency using atomic force microscopy (AFM), dynamic light scattering (DLS), and UV–visible spectrophotometry. All of the synthesized nonionic surfactants revealed their CMC values in 0.055–0.035 mM range depending upon the lipophilic chain length of surfactants. They caused a decreased hemoglobin release and low toxicity against cell culture. They self-assembled and loaded an increased amount of drug in the form of nanorange spherical shape niosomal vesicles. Results of the current study verify these synthesized nonionic surfactants are hemocompatible, nontoxic, and capable of self-assembling into nanorange niosomal vesicles. These niosomal vesicles can be suggested as safe and highly efficient nanocarriers for hydrophobic drug loading and delivery.  相似文献   
106.
Fused filament fabrication (FFF) is a process where thermoplastic materials are heated to its melting point and then extruded, layer by layer, to create a three dimensional printed part. Printing occurs in a layered manner, which leads to creation of voids (air gaps) in the 3D printed parts. These voids act as centers for crack initiation, propagation and therefore resulting bulk mechanical properties are lower. This paper focuses on microstructural characterization and analysis of fused filament fabricated tensile test coupons made from acrylonitrile butadiene styrene polymer, at various design conditions. Comparable tensile modulus with injection molded specimens was obtained for FFF design condition that is, slice height (0.1778 mm), raster width (0.4064 mm), raster to raster air gap (−0.0015 mm), contour to raster air gap (−0.0508 mm) and raster angle (0°). Scanning electron microscope studies provided an understanding as to why FFF processed specimens yielded lower failure strain and an insight into the presence of intralayer voids in specimens having lower tensile modulus. The study confirmed that though bulk mechanicals were affected by the combined effect of inter, intra and interfacial voids, intravoids had a predominant influence.  相似文献   
107.
Flavin adenine dinucleotide (FAD) is an essential redox cofactor in cellular metabolism. The organic synthesis of FAD typically involves coupling flavin mononucleotide (FMN) with adenosine monophosphate, however, existing synthesis routes present limitations such as multiple steps, low yields, and/or difficult-to-obtain starting materials. In this study, we report the synthesis of FAD nucleobase analogues with guanine/cytosine/uracil in place of adenine and deoxyadenosine in place of adenosine using chemical and enzymatic approaches with readily available starting materials, achieved in 1–3 steps with moderate yields (10–57 %). We find that the enzymatic route using Methanocaldococcus jannaschii FMN adenylyltransferase (MjFMNAT) is versatile and can produce these FAD analogues in high yields. Further, we demonstrate that Escherichia coli glutathione reductase is capable of binding and using these analogues as cofactors. Finally, we show that FAD nucleobase analogues can be synthesized inside a cell from cellular substrates FMN and nucleoside triphosphates by the heterologous expression of MjFMNAT. This lays the foundation for their use in studying the molecular role of FAD in cellular metabolism and as biorthogonal reagents in biotechnology and synthetic biology.  相似文献   
108.
The repeated use of cooking oils and ghee for the deep frying of food materials may affect their nutritional quality. The present study evaluated the effect of repeated frying on the physicochemical characteristics and antiradical potential of canola oil and ghee. The oil and ghee were used for frying of fish and chicken for 2, 4, 6, 8, and 10 frying cycles followed by the analysis of physicochemical, oxidative stress, and antiradical parameters. Regression analysis of the data showed a frying cycle-dependent significant linear increase in saponification (R2 = 0.9507–0.9748), peroxide and acid values (R2 = 0.956–0.9915), and malondialdehyde (MDA) production (R2 = 0.9058–0.9557) of canola oil and ghee subjected to fish and chicken frying but exponential increase in saponification value (R2 = 0.9778) and MDA production (R2 = 0.7407) of canola oil and ghee used for fish frying. The increase in the number of frying cycles linearly decreased the iodine value (R2 = 0.9781–0.9924), and 1, 1-diphenyl-2-picrylhydrazyl, hydroxyl, and 2, 2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging potential (R2 = 0.9089–0.9979) of canola oil and ghee. Repeated frying in cooking oil and ghee increases oxidative stress and decreases their physicochemical and antioxidant qualities. Canola oil was comparatively more oxidative resistant than canola ghee. The regression equations derived from regression analysis will guide researchers to conduct similar types of univariate studies.  相似文献   
109.
The established analysis for the study of oxidation using powder specimens is based on the assumption of monosized particles. The experiments, however, are conducted on powders with a distributed particle size. Here we present a statistical approach for the calculation of the rate constant for oxidation. The results of the analysis are applied to new data on oxidation studies of dense powders of silicon carbonitride amorphous ceramics. The monosized model requires a wide range of values for the rate constant to fit the short term and the long-term data, leading to considerable ambiguity in the estimate of the parabolic rate constant, k p, for oxidation. In contrast the statistical model fits over the entire range of data, yielding a much more reliable value for k p. For example, the monosized approach gave a value in the range 19.7 × 10−18 < k p < 2.7 × 10−18 m2/s. In contrast, the statistical model yields a specific value of 4.5 × 10−18 m2/s.  相似文献   
110.
The thermal cyclopolymerization of 2,2-bis(4-trifluorovinyloxyphenyl)-1,1,1,3,3,3-hexafluoropropane affords the first example of a semi-crystalline perfluorocyclobutyl (PFCB) polymer and an anomalous feature for a polymer containing the hexafluoroisopropylidene (6F) linkage. Fluoroalkylation of 2,2-bis(hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane (6F bisphenol A) with 1,2-dibromotetrafluoroethane, followed by zinc mediated elimination affords the bis(trifluorovinyloxyphenyl) monomer in good yield. High molecular weight polymer (Mw=66,700) with molecular weight distribution approaching 2 was obtained by heating neat monomer at 180 °C for 24 h and 220 °C for 8 h. The stereo-random polymer (ca. 48 to 52 cis- to trans-1,2-disubstituted perfluorocyclobutyl groups) is easily crystallized from the melt despite the presence of the 6F group and a substantial increased fluorocarbon content per repeat unit compared to traditional PFCB polymers. A melting temperature approaching 200 °C was measured by DSC and the crystallinity was characterized by WAXD. Remarkably, the high melting semi-crystalline polymer could be easily dissolved in common solvents in greater than 50 wt% solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号