首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2871篇
  免费   120篇
  国内免费   3篇
电工技术   35篇
综合类   1篇
化学工业   288篇
金属工艺   20篇
机械仪表   30篇
建筑科学   15篇
能源动力   17篇
轻工业   45篇
水利工程   2篇
无线电   166篇
一般工业技术   264篇
冶金工业   2016篇
原子能技术   1篇
自动化技术   94篇
  2023年   2篇
  2022年   4篇
  2021年   11篇
  2020年   13篇
  2019年   23篇
  2018年   26篇
  2017年   37篇
  2016年   28篇
  2015年   35篇
  2014年   52篇
  2013年   107篇
  2012年   57篇
  2011年   55篇
  2010年   47篇
  2009年   62篇
  2008年   52篇
  2007年   53篇
  2006年   42篇
  2005年   22篇
  2004年   22篇
  2003年   29篇
  2002年   30篇
  2001年   24篇
  2000年   19篇
  1999年   80篇
  1998年   680篇
  1997年   393篇
  1996年   260篇
  1995年   143篇
  1994年   101篇
  1993年   118篇
  1992年   18篇
  1991年   17篇
  1990年   33篇
  1989年   36篇
  1988年   18篇
  1987年   14篇
  1986年   17篇
  1985年   15篇
  1984年   3篇
  1983年   9篇
  1982年   12篇
  1981年   19篇
  1980年   14篇
  1979年   3篇
  1978年   7篇
  1977年   37篇
  1976年   79篇
  1975年   9篇
  1932年   1篇
排序方式: 共有2994条查询结果,搜索用时 0 毫秒
11.
A Next Generation Network (NGN) is an advanced, packet‐based network that exploits broadband and QoS‐enabled transport technologies for enabling multimedia services. In NGNs, the principles and requirements of IP Multimedia Sub‐system (IMS), which are used to deliver the desired benefits, should be carefully examined and studied. Internet Protocol version 6 (IPv6) is adopted by Third‐generation Partnership Project (3GPP) to solve address storage problem and provide new features (e.g. plug‐and‐play and mobility) for IMS. However, in the early stage of IPv6 deployment, the existing Voice‐over‐IP (VoIP) networks support Internet Protocol version 4 (IPv4) only. For IPv4–IPv6 interworking between IMS and the existing VoIP networks, the IMS‐Application Level Gateway (IMS‐ALG) and the Transition Gateway (TrGW) are proposed to translate Session Initiation Protocol (SIP) and Real‐time Transport Protocol (RTP) packets, respectively. In this paper, we focus on the IPv4–IPv6 translation for RTP packets, which is the bottleneck of VoIP performance. Specifically, we developed a TrGW called National Information and Communications Initiative (NICI)‐TrGW. In NICI‐TrGW, we perform IPv4–IPv6 translation at the Linux kernel and adjust the header room of kernel‐level packet buffer for each packet to reduce memory‐copy operations. We evaluate the performance of NICI‐TrGW and the existing solutions by using the SmartBits. Our study indicates that NICI‐TrGW outperforms the existing solutions in terms of three different output measures including packet loss rate, maximum throughput, and average latency. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
12.
Electronic devices are tested, on occasion, to determine their resistance to exposure to fast neutron fluences in the 1012-to 1014-n/cm2 range. Usually these tests utilize neutrons from a nuclear reactor. Reactor neutron fluences frequently carry unwanted admixtures of gamma rays and of slow neutrons. These conditions have led us to develop an accelerator based neutron source which is largely free of unwanted radiations. In the present paper we examine the effects of gamma rays and of slow neutrons upon electronic devices, we describe our neutron source, and we review various forms of fast neutron dosimetry we use. The results we obtain suggest that our source should be considered as a fast neutron standard.  相似文献   
13.
Based on the standardized IEEE 802.11 Distributed Coordination Function (DCF) protocol, this paper proposes a new backoff mechanism, called Smart Exponential‐Threshold‐Linear (SETL) Backoff Mechanism, to enhance the system performance of contention‐based wireless networks. In the IEEE 802.11 DCF scheme, the smaller contention window (CW) will increase the collision probability, but the larger CW will delay the transmission. Hence, in the proposed SETL scheme, a threshold is set to determine the behavior of CW after each transmission. When the CW is smaller than the threshold, the CW of a competing station is exponentially adjusted to lower collision probability. Conversely, if the CW is larger than the threshold, the CW size is tuned linearly to prevent large transmission delay. Through extensive simulations, the results show that the proposed SETL scheme provides a better system throughput and lower collision rate in both light and heavy network loads than the related backoff algorithm schemes, including Binary Exponential Backoff (BEB), Exponential Increase Exponential Decrease (EIED) and Linear Increase Linear Decrease (LILD). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
14.
Environmental conditions, such as temperature, non‐uniform irradiation, and solar shading, deeply affect the characteristics of photovoltaic (PV) modules in PV‐assisted generation systems. Several local maximum power points (MPPs) are found in the power–voltage curve of PV systems constructed by series/parallel‐connected PV modules under partially shaded conditions. The characteristics of PV systems change unpredictably when multiple MPPs occur, so the actual MPP tracking (MPPT) becomes a difficult task. Conventional MPPT methods for the PV systems under partially shaded conditions cannot quickly find the actual MPP such that the optimal utilization of PV systems cannot be achieved. Based on the p–n junction semiconductor theory, we develop a multipoint direct‐estimation (MPDE) method to directly estimate the multiple MPPs of the PV systems under partially shaded conditions and to cope with the mentioned difficulties. Using the proposed MPDE method, the multiple MPPs of the PV systems under partially shaded conditions can be directly determined from their irradiated current–voltage and power–voltage characteristic curves. The performances of the proposed MPDE method are evaluated by examining the characteristics of multiple MPPs of PV systems with respect to different shading strengths and numbers of the shaded PV modules and also tested using the field data. The experimental results demonstrate that the proposed MPDE method can simply and accurately estimate the multiple MPPs of the PV systems under partially shaded conditions. The optimization of MPP control models and the MPPT for PV systems could be achieved promisingly by applying the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
15.
The combination of antenna array beamforming with multiuser detection can effectively improve the detection efficiency of a wireless system under multipath interference, especially in a fast‐fading channel. This paper studies the performance of an adaptive beamformer incorporated with a block‐wise minimum mean square error(B‐MMSE) detector, which works on a unique signal frame characterized by training sequence preamble and data blocks segmented by zero‐bits. Both beam‐former weights updating and B‐MMSE detection are carried out by either least mean square (LMS) or recursive least square (RLS) algorithm. The comparison of the two adaptive algorithms applied to both beamformer and B‐MMSE detector will be made in terms of convergence behaviour and estimation mean square error. Various multipath patterns are considered to test the receiver's responding rapidity to changing multipath interference. The performance of the adaptive B‐MMSE detector is also compared with that of non‐adaptive version (i.e. through direct matrix inversion). The final performance in error probability simulation reveals that the RLS/B‐MMSE scheme outperforms non‐adaptive B‐MMSE by 1–5 dB, depending on the multipath channel delay profiles of concern. The obtained results also suggest that adaptive beamformer should use RLS algorithm for its fast and robust convergence property; while the B‐MMSE filter can choose either LMS or RLS algorithm depending on antenna array size, multipath severity and implementation complexity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
16.
Developing efficient interfacial hole transporting materials (HTMs) is crucial for achieving high‐performance Pb‐free Sn‐based halide perovskite solar cells (PSCs). Here, a new series of benzodithiophene (BDT)‐based organic small molecules containing tetra‐ and di‐triphenyl amine donors prepared via a straightforward and scalable synthetic route is reported. The thermal, optical, and electrochemical properties of two BDT‐based molecules are shown to be structurally and energetically suitable to serve as HTMs for Sn‐based PSCs. It is reported here that ethylenediammonium/formamidinium tin iodide solar cells using BDT‐based HTMs deliver a champion power conversion efficiency up to 7.59%, outperforming analogous reference solar cells using traditional and expensive HTMs. Thus, these BDT‐based molecules are promising candidates as HTMs for the fabrication of high‐performance Sn‐based PSCs.  相似文献   
17.
A ZnO nanoarchitecture, i.e., ZnO nanosheet (NS) framework, is demonstrated to be a promising electron acceptor and direct electron transport matrix for polymer‐inorganic hybrid solar cells. The ZnO NS framework is constructed on nanoneedles/indium tin oxide substrate via a room‐temperature chemical bath deposition (RT CBD). The framework morphology can be simply tailored by varying the concentration of precursor solution in the RT CBD. The ZnO nanoarchitecture with an appropriate free space between the NSs is consequently demonstrated to facilitate poly(3‐hexylthiophene) (P3HT) infiltration, resulting in superior interface properties, i.e., more efficient charge separation and less charge recombination, in the hybrid. Moreover, apart from the characteristics similar to the ZnO nanorod (NR) array, including vertical feature and single crystalline structure, the ZnO NS framework exhibits a slightly larger absorption edge and a faster electron transport rate. A notable efficiency of 0.88% is therefore attained in the ZnO NS‐P3HT hybrid solar cell, which is higher than that of the ZnO NR‐P3HT hybrid solar cell.  相似文献   
18.
A variety of dopant‐free hole‐transporting materials (HTMs) is developed to serve as alternatives to the typical dopant‐treated ones; however, their photovoltaic performance still falls far behind. In this work, the side chain of a polymeric HTM is engineered by partially introducing diethylene glycol (DEG) groups in order to simultaneously optimize the properties of both the bulk of the HTM layer and the HTM/perovskite interface. The intermolecular π–π stacking interaction in the HTM layer is unexpectedly weakened after the incorporation of DEG groups, whereas the lamellar packing interaction is strengthened. A doubled hole mobility is obtained when 3% of the DEG groups replace the original alkyl side chains, and a champion power conversion efficiency (PCE) of 20.19% (certified: 20.10%) is then achieved, which is the first report of values over 20% for dopant‐free organic HTMs. The device maintains 92.25% of its initial PCE after storing at ambient atmosphere for 30 d, which should be due to the enhanced hydrophobicity of the HTM film.  相似文献   
19.
High crystallinity and compactness of the active layer is essential for metal‐halide perovskite solar cells. Here, a simple pseudohalide‐induced film retreatment technology is developed as the passivation for preformed perovskite film. It is found that the retreatment process yields a controllable decomposition‐to‐recrystallization evolution of the perovskite film. Corresponding, it remarkably enlarges the grain size of the film in all directions, as well as improving the crystallinity and hindering the trap density. Meanwhile, owing to an intermediate catalytic effect of the pseudohalide compound (NH4SCN), no crystal orientation changing and no impurity introduction in the modified film. By integrating the modified perovskite film into the planar heterojunction solar cells, a champion power conversion efficiency of 19.44% with a stabilized output efficiency of 19.02% under 1 sun illumination is obtained, exhibiting a negligible current density–voltage hysteresis. Moreover, such a facile and low‐temperature film retreatment approach guarantees the application in flexible devices, showing a best power conversion efficiency of 17.04%.  相似文献   
20.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is investigated as a transparent cathode to replace indium tin oxide (ITO) in inverted polymer solar cells. Increasing the thickness of the PEDOT:PSS electrode leads to a reduction in transparency and sheet resistance which lowers the photocurrent but increases the fill factor of the solar cells. The offset of photocurrent and fill factor as the thickness is increased leads to a saturation of the power conversion efficiency to 3%. These electrodes were applied to flexible substrates showing similar device performance to glass based devices. Cyclic bending test of these flexible polymer electrodes show improved conversion efficiency retention (92%) when compared to flexible ITO based electrodes (50%) after 300 bend cycles. In addition to using PEDOT:PSS as a cathode replacement for ITO in inverted solar cells, its use as a semi-transparent anode replacement to Ag is also examined. Semi-transparent inverted solar cells fabricated with ITO as the cathode and PEDOT:PSS as the top anode electrode were demonstrated showing efficiencies of 2.51% while replacement of both ITO and Ag with PEDOT:PSS as both the cathode and anode show efficiencies of 0.47%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号