首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68297篇
  免费   4936篇
  国内免费   2722篇
电工技术   3261篇
技术理论   6篇
综合类   4095篇
化学工业   10479篇
金属工艺   3844篇
机械仪表   3803篇
建筑科学   4662篇
矿业工程   2194篇
能源动力   1953篇
轻工业   3494篇
水利工程   1064篇
石油天然气   4533篇
武器工业   457篇
无线电   6458篇
一般工业技术   7219篇
冶金工业   10054篇
原子能技术   721篇
自动化技术   7658篇
  2024年   244篇
  2023年   985篇
  2022年   1700篇
  2021年   2412篇
  2020年   1821篇
  2019年   1639篇
  2018年   1827篇
  2017年   2031篇
  2016年   1816篇
  2015年   2339篇
  2014年   2986篇
  2013年   3463篇
  2012年   3646篇
  2011年   4000篇
  2010年   3671篇
  2009年   3291篇
  2008年   3254篇
  2007年   3210篇
  2006年   3192篇
  2005年   2767篇
  2004年   2043篇
  2003年   2156篇
  2002年   2480篇
  2001年   2078篇
  2000年   1615篇
  1999年   1915篇
  1998年   3550篇
  1997年   2346篇
  1996年   1909篇
  1995年   1267篇
  1994年   966篇
  1993年   882篇
  1992年   401篇
  1991年   321篇
  1990年   259篇
  1989年   213篇
  1988年   207篇
  1987年   144篇
  1986年   122篇
  1985年   73篇
  1984年   39篇
  1983年   45篇
  1982年   49篇
  1981年   44篇
  1980年   83篇
  1979年   7篇
  1978年   15篇
  1977年   138篇
  1976年   277篇
  1975年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Inorganic/organic dielectric composites are very attractive for high energy density electrostatic capacitors. Usually, linear dielectric and ferroelectric materials are chosen as inorganic fillers to improve energy storage performance. Antiferroelectric (AFE) materials, especially single-crystalline AFE oxides, have relatively high efficiency and higher density than linear dielectrics or ferroelectrics. However, adding single-crystalline AFE oxides into polymers to construct composite with improved energy storage performance remains elusive. In this study, high-quality freestanding single-crystalline PbZrO3 membranes are obtained by a water-soluble sacrificial layer method. They exhibit classic AFE behavior and then 2D–2D type PbZrO3/PVDF composites with the different film thicknesses of PbZrO3 (0.1-0.4 µm) is constructed. Their dielectric properties and polarization response improve significantly as compared to pure PVDF and are optimized in the PbZrO3(0.3 µm)/PVDF composite. Consequently, a record-high energy density of 43.3 J cm−3 is achieved at a large breakdown strength of 750 MV m−1. Phase-field simulation indicates that inserting PbZrO3 membranes effectively reduces the breakdown path. Single-crystalline AFE oxide membranes will be useful fillers for composite-based high-power capacitors.  相似文献   
992.
Na superionic conductor of Na3MnTi(PO4)3 only containing high earth-abundance elements is regarded as one of the most promising cathodes for the applicable Na-ion batteries due to its desirable cycling stability and high safety. However, the voltage hysteresis caused by Mn2+ ions resided in Na+ vacancies has led to significant capacity loss associated with Mn reaction centers between 2.5–4.2 V. Herein, the sodium excess strategy based on charge compensation is applied to suppress the undesirable voltage hysteresis, thereby achieving sufficient utilization of the Mn2+/Mn3+ and Mn3+/Mn4+ redox couples. These findings indicate that the sodium excess Na3.5MnTi0.5Ti0.5(PO4)3 cathode with Ti4+ reduction has a lowest Mn2+ occupation on the Na+ vacancies in its initial composition, which can improve the kinetics properties, finally contributing to a suppressed voltage hysteresis. Based on these findings, it is further applied the sodium excess route on a Mn-richer phosphate cathode, which enables the suppressed voltage hysteresis and more reversible capacity. Consequently, this developed Na3.6Mn1.15Ti0.85(PO4)3 cathode achieved a high energy density over 380 Wh kg−1 (based on active substance mass of cathode) in full-cell configurations, which is not only superior to most of the phosphate cathodes, but also delivers more application potential than the typical oxides cathodes for Na-ion batteries.  相似文献   
993.
Due to the intrinsic nature of multi-physics, it is prohibitively complex to design and implement a simulation software platform for study of structural responses to a detonation shock. In this article, a partitioned fluid-structure interaction computing platform is designed for parallel simulating structural responses to a detonation shock. The detonation and wave propagation are modeled in an open-source multi-component solver based on OpenFOAM and blastFoam, and the structural responses are simulated through the finite element library deal.II. To capture the interaction dynamics between the fluid and the structure, both solvers are adapted to preCICE. For improving the parallel performance of the computing platform, the inter-solver data is exchanged by peer-to-peer communications and the intermediate server in conventional multi-physics software is eliminated. Furthermore, the coupled solver with detonation support has been deployed on a computing cluster after considering the distributed data storage and load-balancing between solvers. The 3D numerical result of structural responses to a detonation shock is presented and analyzed. On 256 processor cores, the speedup ratio of the simulations for a detonation shock reach 178.0 with 5.1 million of mesh cells and the parallel efficiency achieve 69.5%. The results demonstrate good potential of massively parallel simulations. Overall, a general-purpose fluid-structure interaction software platform with detonation support is proposed by integrating open source codes. And this work has important practical significance for engineering application in fields of construction blasting, mining, and so forth.  相似文献   
994.
Both photodetectors (PDs) and optoelectronic synaptic devices (OSDs) are optoelectronic devices converting light signals into electrical responses. Optoelectronic devices based on organic semiconductors and halide perovskites have aroused tremendous research interest owing to their exceptional optical/electrical characteristics and low-cost processability. The heterojunction formed between organic semiconductors and halide perovskites can modify the exciton dissociation/recombination efficiency and modulate the charge-trapping effect. Consequently, organic semiconductor/halide perovskite heterojunctions can endow PDs and OSDs with high photo responsivity and the ability to simulate synaptic functions respectively, making them appropriate for the development of energy-efficient artificial visual systems with sensory and recognition functions. This article summarizes the recent advances in this research field. The physical/chemical properties and preparation methods of organic semiconductor/halide perovskite heterojunctions are briefly introduced. Then the development of PDs and OSDs based on organic semiconductor/halide perovskite heterojunctions, as well as their innovative applications, are systematically presented. Finally, some prospective challenges and probable strategies for the future development of optoelectronic devices based on organic semiconductor/halide perovskite heterojunctions are discussed.  相似文献   
995.
Material design of guest acceptor is always a big challenge for improving the efficiency of ternary organic solar cells (OSCs). Here, a pair of isomeric nonfullerene acceptors based on quinoxaline core, Qx–p-C7H8O and Qx–m-C7H8O, is designed and synthesized. By moving the alkoxy chain attached on side phenyl from meta-position to para-position, both π–π stacking distance and crystallinity are enhanced simultaneously. They obtain the uplifted lowest unoccupied molecular orbital level. Compared to Qx–m-C7H8O, Qx–p-C7H8O exhibits wider absorption spectrum and higher extinction coefficient. Using D18-Cl:N3 as host materials, the addition of guest acceptor Qx–p-C7H8O significantly improves the power conversion efficiency (PCE) from 17.61% to 18.49% because of higher open-circuit voltage (0.875 V) and short-circuit current density (27.85 mA cm−2). This can be attributed to the faster exciton dissociation, more balanced carrier mobility, fine fiber morphology, and lower energy loss in the ternary devices. However, Qx–m-C7H8O-based ternary device achieves relatively low PCE of 17.17% because this device shows extremely low electron mobility. The results indicate that molecular stacking, film morphology, etc., can be effectively modulated by fine-tuning the side chains of guest materials, which may be an effective design rule for further improving the PCE of OSCs.  相似文献   
996.
Designing n-type polymers with high electrical conductivity remains a major challenge for organic thermoelectrics (OTEs). Herein, by devising a novel selenophene-based electron-deficient building block, the pronounced advantages of selenium substitution in simultaneously enabling advanced n-type polymers is demonstrated with high mobility (≈2 orders of magnitude higher versus their sulfur-based analogues due to both intensified intra- and inter-chain interactions) and much improved n-doping efficiency (enabled by the largely lowered LUMO level with a ≈0.2 eV margin) of the resulting polymers. Via side chain optimization and donor engineering, the selenium-substituted polymer, f-BSeI2TEG-FT, achieves a highest conductivity of 103.5 S cm−1 and power factor of 70.1 µW m−1 K−2, which are among the highest values reported in literature for n-type polymers, and f-BSeI2TEG-FT greatly outperformed the sulfur-based analogue polymer by 40% conductivity increase. These results demonstrate that selenium substitution is a very effective strategy for improving n-type performance and provide important structure-property correlations for developing high-performing n-type OTE materials.  相似文献   
997.
Lithium metal (LM) is a promising anode material for next generation lithium ion based electrochemical energy storage devices. Critical issues of unstable solid electrolyte interphases (SEIs) and dendrite growth however still impede its practical applications. Herein, a composite gel polymer electrolyte (GPE), formed through in situ polymerization of pentaerythritol tetraacrylate with fumed silica fillers, is developed to achieve high performance lithium metal batteries (LMBs). As evidenced theoretically and experimentally, the presence of SiO2 not only accelerates Li+ transport but also regulates Li+ solvation sheath structures, thus facilitating fast kinetics and formation of stable LiF-rich interphase and achieving uniform Li depositions to suppress Li dendrite growth. The composite GPE-based Li||Cu half-cells and Li||Li symmetrical cells display high Coulombic efficiency (CE) of 90.3% after 450 cycles and maintain stability over 960 h at 3 mA cm−2 and 3 mAh cm−2, respectively. In addition, Li||LiFePO4 full-cells with a LM anode of limited Li supply of 4 mAh cm−2 achieve capacity retention of 68.5% after 700 cycles at 0.5 C (1 C = 170 mA g−1). Especially, when further applied in anode-free LMBs, the carbon cloth||LiFePO4 full-cell exhibits excellent cycling stability with an average CE of 99.94% and capacity retention of 90.3% at the 160th cycle at 0.5 C.  相似文献   
998.
Photonic spin-orbit interactions describe the interactions between spin angular momentum and orbital angular momentum of photons, which play essential roles in subwavelength optics. However, the influence of frequency dispersion on photonic angular-momentum coupling is rarely studied. Here, by elaborately designing the contribution of the geometric phase and waveguide propagation phase, the dispersion-enabled symmetry switching of photonic angular-momentum coupling is experimentally demonstrated. This notion may induce many exotic phenomena and be found in enormous applications, such as the spin-Hall effect, optical calculation, and wavelength division multiplexing systems. As a proof-of-concept demonstration, two metadevices, a multi-channel vectorial vortex beam generator and a phase-only hologram, are applied to experimentally display optical double convolution, which may offer additional degrees of freedom to accelerate computing and a miniaturization configuration for optical convolution without collimation operation. These results may provide a new opportunity for complex vector optical field manipulation and calculation, optical information coding, light-matter interaction manipulation, and optical communication.  相似文献   
999.
Designing and developing visible-light-responsive materials for solar to chemical energy is an efficient and promising approach to green and sustainable carbon-neutral energy systems. Herein, a facile in situ growth hydrothermal strategy using Mo-modified ZnIn2S4 (Mo-ZIS) nanosheets coupled with NiTiO3 (NTO) microrods to synthesize multifunctional Mo-modified ZIS wrapped NTO microrods (Mo-ZIS@NTO) photocatalyst with enhanced interfacial electric field (IEF) effect and typical S-scheme heterojunction is reported. Mo-ZIS@NTO catalyst possesses wide-spectrum light absorption properties, excellent visible light-to-thermal energy effect, electron mobility, charges transfer, and strong IEF and exhibits excellent solar-to-chemical energy conversion for efficient visible-light-driven photocatalytic hydrogen evolution. Notably, the engineered Mo1.4-ZIS@NTO catalyst exhibits superior performance with H2 evolution rate of up to 14.06 mmol g−1 h− 1 and the apparent quantum efficiency of 44.1% at 420 nm. The scientific explorations provide an in-depth understanding of microstructure, S-scheme heterojunction, enhanced IEF, Mo-dopant facilitation effect. Moreover, the theoretical simulations verify the critical role of Mo element in promoting the adsorption and activation of H2O molecules, modulating the H adsorption behavior on active S sites, and thus accelerating the overall catalytic efficiency. The photocatalytic hydrogen evolution mechanism via S-scheme heterojunction with adjustable IEF regulation over Mo1.4-ZIS@NTO is also demonstrated.  相似文献   
1000.
A composite liquid crystalline elastomer is designed, combining main-chain and side-chain mesogenic polymers in the network, and resulting in micro-phase separated regions of nematic and smectic ordering in the macroscopically homogeneous elastomer. A range of different fractions of the components is explored, from fully nematic main-chain system, across to fully smectic side-chain elastomer. Thermal phase transitions of both phases coexisting in the material are detected by calorimetry, and the nematic/smectic structure investigated by X-ray scattering. The tensile stress–strain data reveal the key effect of such a multi-phase composite, where the nematic fraction adds ductility while the smectic fraction increases the modulus and mechanical stiffness. Varying the composition, the authors are able to optimize the mechanical properties of this material type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号