首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4213篇
  免费   7篇
  国内免费   4篇
电工技术   20篇
综合类   2篇
化学工业   200篇
金属工艺   15篇
机械仪表   19篇
建筑科学   42篇
能源动力   94篇
轻工业   123篇
水利工程   22篇
石油天然气   12篇
无线电   165篇
一般工业技术   208篇
冶金工业   3160篇
原子能技术   5篇
自动化技术   137篇
  2024年   37篇
  2023年   24篇
  2022年   32篇
  2021年   71篇
  2020年   48篇
  2019年   39篇
  2018年   52篇
  2017年   36篇
  2016年   48篇
  2015年   37篇
  2014年   54篇
  2013年   72篇
  2012年   55篇
  2011年   64篇
  2010年   53篇
  2009年   47篇
  2008年   44篇
  2007年   36篇
  2006年   38篇
  2005年   33篇
  2004年   20篇
  2003年   20篇
  2002年   14篇
  2001年   14篇
  2000年   12篇
  1999年   125篇
  1998年   1025篇
  1997年   603篇
  1996年   387篇
  1995年   183篇
  1994年   187篇
  1993年   185篇
  1992年   29篇
  1991年   15篇
  1990年   19篇
  1989年   26篇
  1988年   27篇
  1987年   23篇
  1986年   18篇
  1985年   19篇
  1984年   3篇
  1983年   6篇
  1982年   23篇
  1981年   21篇
  1980年   26篇
  1979年   5篇
  1978年   9篇
  1977年   86篇
  1976年   161篇
  1975年   3篇
排序方式: 共有4224条查询结果,搜索用时 15 毫秒
71.
COVID-19 is a recently emerged viral infection worldwide. SARS-CoV-2, the causative virus, is believed to have emerged from bat coronaviruses, probably through host conversion. The bat coronavirus which has the highest gene homology to SARS-CoV-2 specifically infects deep forest bats in China whose habitat extends through the Middle East to Southern Europe. Host conversion might have occurred due to the deforestation by humans exposing wild bats to the environment they had never encountered before. SARS-CoV-2 infects cells through two mechanisms: through its receptor ACE2 with the help of enzyme TMPRSS and through membrane fusion with the help of elastases in the inflammatory condition. Obesity, hypertension, diabetes mellitus, and pulmonary diseases cause poor prognosis of COVID-19. Aging is another factor promoting poor prognosis. These diseases and aging cause low-level and persistent inflammation in humans, which can promote poor prognosis of COVID-19. Psoriasis and atopic dermatitis are the major inflammatory skin diseases. These inflammatory skin conditions, however, do not seem to cause poor prognosis for COVID-19 based on the epidemiological data accumulated so far. These mechanisms need to be elucidated.  相似文献   
72.
    
Heavy metal toxicity is one of the most devastating abiotic stresses. Heavy metals cause serious damage to plant growth and productivity, which is a major problem for sustainable agriculture. It adversely affects plant molecular physiology and biochemistry by generating osmotic stress, ionic imbalance, oxidative stress, membrane disorganization, cellular toxicity, and metabolic homeostasis. To improve and stimulate plant tolerance to heavy metal stress, the application of biostimulants can be an effective approach without threatening the ecosystem. Melatonin (N-acetyl-5-methoxytryptamine), a biostimulator, plant growth regulator, and antioxidant, promotes plant tolerance to heavy metal stress by improving redox and nutrient homeostasis, osmotic balance, and primary and secondary metabolism. It is important to perceive the complete and detailed regulatory mechanisms of exogenous and endogenous melatonin-mediated heavy metal-toxicity mitigation in plants to identify potential research gaps that should be addressed in the future. This review provides a novel insight to understand the multifunctional role of melatonin in reducing heavy metal stress and the underlying molecular mechanisms.  相似文献   
73.
    
Pseudoachondroplasia (PSACH), a short limb skeletal dysplasia associated with premature joint degeneration, is caused by misfolding mutations in cartilage oligomeric matrix protein (COMP). Here, we define mutant-COMP-induced stress mechanisms that occur in articular chondrocytes of MT-COMP mice, a murine model of PSACH. The accumulation of mutant-COMP in the ER occurred early in MT-COMP articular chondrocytes and stimulated inflammation (TNFα) at 4 weeks, and articular chondrocyte death increased at 8 weeks while ER stress through CHOP was elevated by 12 weeks. Importantly, blockage of autophagy (pS6), the major mechanism that clears the ER, sustained cellular stress in MT-COMP articular chondrocytes. Degeneration of MT-COMP articular cartilage was similar to that observed in PSACH and was associated with increased MMPs, a family of degradative enzymes. Moreover, chronic cellular stresses stimulated senescence. Senescence-associated secretory phenotype (SASP) may play a role in generating and propagating a pro-degradative environment in the MT-COMP murine joint. The loss of CHOP or resveratrol treatment from birth preserved joint health in MT-COMP mice. Taken together, these results indicate that ER stress/CHOP signaling and autophagy blockage are central to mutant-COMP joint degeneration, and MT-COMP mice joint health can be preserved by decreasing articular chondrocyte stress. Future joint sparing therapeutics for PSACH may include resveratrol.  相似文献   
74.
    
Lightweight insulation refractories are essential for high-temperature performance to reduce energy consumption. This study investigates a new insulation material, that is, solid waste rice husk ash (RHA) derived lightweight refractory castable, replacing traditional insulation refractory brick. The RHA is generated after the burning of rice husk as biomass fuel. The RHA is used as an aggregate and alkali-extracted silica sol from RHA as a binder to fabricate the insulation castable. The nanosilica containing (~30 wt%) sol is employed to synthesize the refractory castable by varying the sol amount (2.5-12.5 wt% silica from sol). The castable specimens are cast by a vibro-caster and fired at 900-1200°C in a muffle furnace. The physic-mechanical and thermal conductivity (κ) of the castable is investigated. At 1100°C with 10 wt% dry sol retaining sample shows an excellent apparent porosity (~65%), low bulk density (~ 0.8 g/cm3), and κ (0.136 W/m k) with sustainable compressive strength (6 MPa). The acquired results are a good match with the literature (other wastes-derived insulation materials) and industrial (silica insulation brick) obtained data. These promising outcomes may inspire the refractory industries for using RHA as an aggregate and RHA extracted sol as a binder for making insulation castable.  相似文献   
75.
Hybrid magnetic nanostructures with high coercivity have immense application potential in various fields. Nickel (Ni) electrodeposited inside Cobalt (Co) nanotubes (a new system named Ni @ Co nanorods) were fabricated using a two-step potentiostatic electrodeposition method. Ni @ Co nanorods were crystalline, and they have an average diameter of 150 nm and length of ~15 μm. The X-ray diffraction studies revealed the existence of two separate phases corresponding to Ni and Co. Ni @ Co nanorods exhibited a very high longitudinal coercivity. The general mobility-assisted growth mechanism proposed for the growth of one-dimensional nanostructures inside nano porous alumina during potentiostatic electrodeposition is found to be valid in this case too.  相似文献   
76.
Molecular dynamics simulations were used to study deformation mechanisms during uniaxial tensile deformation of an amorphous polyethylene polymer. The stress-strain behavior comprised elastic, yield, strain softening and strain hardening regions that were qualitatively in agreement with previous simulations and experimental results. The chain lengths, number of chains, strain rate and temperature dependence of the stress-strain behavior was investigated. The energy contributions from the united atom potential were calculated as a function of strain to help elucidate the inherent deformation mechanisms within the elastic, yield, and strain hardening regions. The results of examining the partitioning of energy show that the elastic and yield regions were mainly dominated by interchain non-bonded interactions whereas strain hardening regions were mainly dominated by intra-chain dihedral motion of polyethylene. Additional results show how internal mechanisms associated with bond length, bond angle, dihedral distributions, change of free volume and chain entanglements evolve with increasing deformation.  相似文献   
77.
Mesoporous silicas with vesicular and onion-like morphologies were assembled through hydrogen-bonding pathway from sodium silicate as silica source and electrically neutral α,ω-diamine, Jeffamine D2000 surfactant (H2NCH(CH3)CH2[OCH2CH(CH3)]33NH2) as template in aqueous media at different synthesis temperatures (25, 60 and 100 °C). Assembling the material at 100 °C afforded onion-like core shell mesoporous silica, while at relatively lower temperature, e.g. 25 and 60 °C, multilamellar vesicles were obtained. Mesoporous silica with onion-like morphology was also obtained by a two-step synthesis involving an aging period of 20 h at room temperature followed by a hydrothermal stage (1–12 h) at 100 °C. The heavily cross-linked (Q4/Q3 ratio of 4.43) onion-like mesophase silica exhibited high hydrothermal stability. The BET surface area, pore volume and KJS (Kruk-Jaroniec-Sayari) pore diameter of the onion-like mesoporous silica were found to be 464 m2 g−1, 1.16 m3 g−1 and 7.2 nm, respectively.  相似文献   
78.
Bangladesh is an agricultural country. About 80% of the total population live in rural areas. The contribution of agriculture to the gross domestic product is 30%. Rice is the major food crop while jute, sugarcane and tea are the main cash crops. Other important crops are wheat, tobacco, pulses, vegetables and fruits. Overall productivity in Bangladesh is stagnating or declining. The implication of yield stagnation or declining productivity is severe, since these trends have occurred despite rapid growth in the use of chemical fertilisers. Depletion of soil organic matter is the main cause of low productivity, which is considered one of the most serious threats to the sustainability of agriculture in Bangladesh. In Bangladesh, most soils have less than 17 g/kg and some soils have less than 10 g/kg organic matter. Farmers realise that there is a problem with soil fertility related to organic matter depletion. Farmers say that organic matter increases yield, reduces the production cost, improves crop growth and the economy, increases water-holding capacity and improves the soil structure. They recognise soil with higher organic matter content by darker brownish to black in colour. Some farmers are using fast-growing trees such as Flemingia macrophyla, Ipilipil (Leucaen leucophala), Glyricidia sepium, Boga Medula (Tephrosia candida), Dhol Kolmi (Ipomoea fistulosa), etc., as living fences, which can be used as fuel, fertiliser and fodder. To increase the soil organic matter, farmers use green manure crops, compost, quick compost, cow dung, azolla, etc. However, fuel for cooking purposes is limited and cow dung and crop residues are largely used as fuel. Crop residues are also used as fodder for livestock. Farmers expressed the wish to learn more about organic fertilizer management. However, sufficient food should be produced to keep pace with population growth. To alleviate the hunger and poverty is to increase the intensity of agricultural production and maintain favorable ecological conditions. Therefore, more organic matter should be used in the farmers' fields to sustain the soil fertility in an intensive farming system. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
79.
    
In this study the total atomic cross-section (σa), total electronic cross-section (σe), effective atomic number (Zeff) and effective electron density (Neff) of locally developed ilmenite-magnetite (I-M) concrete were calculated analytically for different photon energies from 1 keV to 20 MeV and compared with concretes of different densities and compositions. The effect of Zeff on the mass attenuation coefficient (μ/ρ, σa, σe) is shown graphically. The values of σa, σe, Zeff and Neff of I-M concrete were found to be higher than those of the ordinary concretes and in some cases than those of heavy concretes, which proved I-M concrete’s shielding effectiveness. The results of this study will provide some useful information for a shielding material database for practical shielding calculation. https://doi.org/10.1051/radiopro/2015005  相似文献   
80.
Neurofibromatosis 2 (NF2) features bilateral vestibular schwannomas, other benign neural tumors, and cataracts. Patients in some families develop many tumors at an early age and have rapid clinical progression, whereas in other families, patients may not have symptoms until much later and vestibular schwannomas may be the only tumors. The NF2 gene has been cloned from chromosome 22q; most identified germ-line mutations result in a truncated protein and severe NF2. To look for additional mutations and clinical correlations, we used SSCP analysis to screen DNA from 32 unrelated patients. We identified 20 different mutations in 21 patients (66%): 10 nonsense mutations, 2 frameshifts, 7 splice-site mutations, and 1 large in-frame deletion. Clinical information on 47 patients from the 21 families included ages at onset and at diagnosis, numbers of meningiomas, spinal and skin tumors, and presence of cataracts and retinal abnormalities. We compared clinical findings in patients with nonsense or frameshift mutations to those with splice-site mutations. When each patient was considered as an independent random event, the two groups differed (P < or = .05) for nearly every variable. Patients with nonsense or frameshift mutations were younger at onset and at diagnosis and had a higher frequency and mean number of tumors, supporting the correlation between nonsense and frameshift mutations and severe NF2. When each family was considered as an independent random event, statistically significant differences between the two groups were observed only for mean ages at onset and at diagnosis. A larger data set is needed to resolve these discrepancies. We observed retinal hamartomas and/or epiretinal membranes in nine patients from five families with four different nonsense mutations. This finding, which may represent a new genotype-phenotype correlation, merits further study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号