首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5474篇
  免费   118篇
  国内免费   16篇
电工技术   28篇
综合类   9篇
化学工业   528篇
金属工艺   73篇
机械仪表   90篇
建筑科学   74篇
矿业工程   8篇
能源动力   209篇
轻工业   379篇
水利工程   22篇
石油天然气   26篇
无线电   147篇
一般工业技术   492篇
冶金工业   3182篇
原子能技术   36篇
自动化技术   305篇
  2024年   8篇
  2023年   42篇
  2022年   80篇
  2021年   103篇
  2020年   99篇
  2019年   97篇
  2018年   130篇
  2017年   125篇
  2016年   111篇
  2015年   77篇
  2014年   88篇
  2013年   223篇
  2012年   149篇
  2011年   153篇
  2010年   113篇
  2009年   144篇
  2008年   155篇
  2007年   112篇
  2006年   81篇
  2005年   65篇
  2004年   47篇
  2003年   47篇
  2002年   27篇
  2001年   15篇
  2000年   20篇
  1999年   126篇
  1998年   1031篇
  1997年   609篇
  1996年   380篇
  1995年   181篇
  1994年   192篇
  1993年   193篇
  1992年   36篇
  1991年   24篇
  1990年   27篇
  1989年   29篇
  1988年   30篇
  1987年   26篇
  1986年   25篇
  1985年   24篇
  1984年   7篇
  1983年   8篇
  1982年   25篇
  1981年   23篇
  1980年   22篇
  1979年   4篇
  1978年   8篇
  1977年   87篇
  1976年   163篇
  1975年   4篇
排序方式: 共有5608条查询结果,搜索用时 172 毫秒
971.
This article aims to reduce the melting temperature of lead-free solder alloy and promote its mechanical properties. Eutectic tin-silver lead-free solder has a high melting temperature 221 °C used for electronic component soldering. This melting temperature, higher than that of lead–tin conventional eutectic solder, is about 183 °C. The effect of the melt spinning process and copper additions into eutectic Sn-Ag solder enhances the crystallite size to about 47.92 nm which leads to a decrease in the melting point to about 214.70 °C, where the reflow process for low heat-resistant components on print circuit boards needs lower melting point solder. The results showed the presence of intermetallic compound Ag3Sn formed in nano-scale at the Sn-3.5Ag alloy due to short time solidification. The presence of new intermetallic compound, IMC from Ag0.8Sn0.2 and Ag phase improves the mechanical properties, and then enhances the micro-creep resistance especially at Sn-3.5Ag-0.7Cu. The higher Young’s modulus of Sn-3.5Ag-0.5Cu alloy 55.356 GPa could be attributed to uniform distribution of eutectic phases. Disappearance of tin whiskers in most of the lead-free melt-spun alloys indicates reduction of the internal stresses. The stress exponent (n) values for all prepared alloys were from 4.6 to 5.9, this indicates to climb deformation mechanism. We recommend that the Sn95.7-Ag3.5-Cu0.7 alloy has suitable mechanical properties, low internal friction 0.069, low pasty range 21.7 °C and low melting point 214.70 °C suitable for step soldering applications.  相似文献   
972.
Abstract

In this paper, a sliding mode speed observer for direct torque controlled (DTC) induction motor drives is developed. The speed observer accuracy is guaranteed through the current observer. The rotor speed is estimated by the observer based on the measured and estimated stator currents. The system is firstly simulated by MATLAB and then tested by hardware in the loop. Then, the application is implemented on a TMS320C6711, 32-bit fixed point digital signal processor (DSP). The experimental results show the robustness, feasibility, and performance of the proposed observer structure.  相似文献   
973.
High-performance activated carbon-zinc oxide (Ac–ZnO) nanocatalyst was fabricated via the microwave-assisted technique. Ac–ZnO was characterized and the results indicated that Ac–ZnO is stable, had a band gap of 3.26?eV and a surface area of 603.5?m2g?1, and exhibited excellent adsorptive and degrading potentials. About 93% phenol was adsorbed within 550?min of reaction by Ac–ZnO. Impressively, a complete degradation was achieved in 90?min via a photo-Fenton/Ac–ZnO system under optimum conditions. An artificial neural network (ANN) model was developed and applied to study the relative significance of input variables affecting the degradation of phenol in a photo-Fenton process. The ANN results indicate that increases in both H2O2 and Ac–ZnO dosage enhanced the rate of phenol degradation. The highest rate constant at the optimum conditions was 0.093?min?1 and it was found to be consistent with the ANN-predicted rate constant (0.095?min?1).  相似文献   
974.
A polymer–salt-based aqueous two-phase system (ATPS) was developed for the effective extraction and purification of extracellular β-xylosidase from the fermentation broth of recombinant Bacillus megaterium MS941. The effect of molecular weight (MW) of polyethylene glycol (PEG), tie-line length (TLL), volume ratio (VR), crude loading and pH on the recovery performance was evaluated. Under the optimal extraction conditions, β-xylosidase was successfully purified up to 23-fold with a recovery yield of 99% in the bottom salt-rich phase at PEG 4,000/potassium phosphate ATPS comprising TLL of 41.8, VR of 2.3, crude loading (CL) of 30% (w/w) at pH 6.  相似文献   
975.
\({BaFe_{4-{x}}Pt_{{x}}Sb_{12}}\) (x = 0, 0.1, 0.2) compounds were prepared by melting and annealing, followed by a spark plasma sintering method. Low-temperature thermoelectric and magnetic properties were investigated based on Seebeck coefficient, electrical and thermal conductivity and magnetization measurements. The structural properties of \({BaFe_{4-{x}}Pt_{{x}}Sb_{12}}\) (x = 0, 0.1, 0.2) compounds were ascertained by powder x-ray diffraction analysis, confirming that all samples have a main phase of a skutterudite structure with the space group Im\({\mathrm {\bar{3}}}\). The lattice parameters obtained, 9.202(5), 9.199(5) and 9.202(1) Å for x = 0, 0.1 and 0.2, respectively, were found consistent with literature. The Seebeck coefficient sign shows that holes are dominant carriers in all compounds. The local maximum Seebeck coefficient was observed around 50 K which may be a trace of paramagnon-drag effect of charge carriers. Thermal conductivity and electrical resistivity measurements were carried out between 4.2 and 300 K. Temperature dependence of electrical resistivity reflects that all samples show semi-metallic behavior in our temperature range of 4.2–300 K. Samples for x = 0.1 and x = 0.2 show Kondo-like behavior. In magnetization measurement, we observe that there are two successive magnetic transitions in Pt-substituted compounds; however, there is only one (transition from a paramagnetic state to long-range magnetic ordering) in Pt-free compounds. In Pt-substituted compounds, the first transition appears at \( T _{ {\rm c}}\) = 48 K. In addition, the second transition is observed at \( T _{ {\rm irr}}\) = 30 K where an intermediate state is observed before the magnetic ordering transforms to an irreversible ferromagnetic state. We concluded that Pt substitution on the Fe side effectual on the thermoelectric and magnetic properties of \({BaFe_{4-{x}}Pt_{{x}}Sb_{12}}\) (x = 0, 0.1, 0.2) compounds.  相似文献   
976.
Developing complex supramolecular biomaterials through highly dynamic and reversible noncovalent interactions has attracted great attention from the scientific community aiming key biomedical and biotechnological applications, including tissue engineering, regenerative medicine, or drug delivery. In this study, the authors report the fabrication of hybrid supramolecular multilayered biomaterials, comprising high‐molecular‐weight biopolymers and oppositely charged low‐molecular‐weight peptide amphiphiles (PAs), through combination of self‐assembly and electrostatically driven layer‐by‐layer (LbL) assembly approach. Alginate, an anionic polysaccharide, is used to trigger the self‐assembling capability of positively charged PA and formation of 1D nanofiber networks. The LbL technology is further used to fabricate supramolecular multilayered biomaterials by repeating the alternate deposition of both molecules. The fabrication process is monitored by quartz crystal microbalance, revealing that both materials can be successfully combined to conceive stable supramolecular systems. The morphological properties of the systems are studied by advanced microscopy techniques, revealing the nanostructured dimensions and 1D nanofibrous network of the assembly formed by the two molecules. Enhanced C2C12 cell adhesion, proliferation, and differentiation are observed on nanostructures having PA as outermost layer. Such supramolecular biomaterials demonstrate to be innovative matrices for cell culture and hold great potential to be used in the near future as promising biomimetic supramolecular nanoplatforms for practical applications.  相似文献   
977.
Undoped and Dy3+‐doped barium tantalate phosphors were synthesized by the solid‐state reaction method at 1425°C. Also, 10 mol% Dy3+‐doped BaTa2O6 was sintered between 1150 and 1425°C in order to determine temperature effect on structural and luminescence properties. Afterwards, they were characterized by XRD, SEM‐EDS and photoluminescence (PL) analyses. PL spectra exhibited the excitation peaks between 300 and 440 nm. Two typical emissions were observed at 486.2 nm (blue) and 577.7 nm (yellow) due to the 4F9/26H15/2 and 4F9/26H13/2 transitions, respectively. Emission intensities increased with increasing doping concentration of Dy3+ up to 10 mol% and then decreased due to the concentration quenching effect. Moreover, depending on the increase in heat treatment temperature, the intensity of emission reached maximum at 1425°C. The calculated CIE chromaticity coordinates of phosphors located in the white light region.  相似文献   
978.
Differently than in the past, today environmental problems have local, national and international concern. The environmental problems in the Black Sea region are a good example for this phenomenon. These problems have affected all six countries that have shores with the Black Sea. The current study analyses these problems in detail. It intends to detect potential reasons for problems and provide suggestions to solve these problems by considering the economic dimensions. In addition, the impact of problems on the city life is examined. Also, the roles and importance of voluntary organizations on solving environmental problems are emphasized.  相似文献   
979.
The prediction of Los Angeles (LA) abrasion loss from some indirect tests is useful for practical applications. For this purpose, LA abrasion, electrical resistivity, density and porosity tests were carried out on 27 different rock types. LA abrasion loss values were correlated with electrical resistivity and a good correlation between the two parameters was found. To see the effect of rock class on the correlation, regression analysis was repeated for igneous rocks, metamorphic rocks and sedimentary rocks, respectively. It was seen that correlation coefficients were increased for the rock classes. In addition, the data were divided into two groups according to porosity and density, respectively. After repeating regression analysis for these porosity and density groups, stronger correlations were obtained compared to the equation derived for all rocks. The validity of the derived equations was statistically tested and it was shown that all derived equations were significant. Finally, it can be said that all derived equations can alternatively be used for the estimation of LA abrasion loss from electrical resistivity.  相似文献   
980.
The levels of trace elements in different types of food material consumed in Turkey were determined by flame and graphite furnace atomic absorption spectrometry. Food samples were digested with dry ashing, wet ashing and microwave digestion procedures in this study. The microwave digestion procedure was chosen for the digestion of all the food samples because it required shorter time and made higher recovery (specially for Se). Fe, Cu, Mn, Zn, Al and Se were determined by flame and graphite furnace atomic absorption spectrometry, respectively. Relative standard deviations (RSD) were found below 10%. The accuracy of the procedure was confirmed by certified reference materials. Moreover, this procedure was easier to use when compared with dry and wet digestions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号