首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1303篇
  免费   92篇
  国内免费   13篇
电工技术   38篇
综合类   6篇
化学工业   301篇
金属工艺   26篇
机械仪表   65篇
建筑科学   64篇
矿业工程   3篇
能源动力   85篇
轻工业   120篇
水利工程   28篇
石油天然气   24篇
无线电   122篇
一般工业技术   194篇
冶金工业   42篇
原子能技术   8篇
自动化技术   282篇
  2024年   7篇
  2023年   40篇
  2022年   48篇
  2021年   93篇
  2020年   85篇
  2019年   95篇
  2018年   123篇
  2017年   120篇
  2016年   95篇
  2015年   58篇
  2014年   95篇
  2013年   153篇
  2012年   82篇
  2011年   87篇
  2010年   53篇
  2009年   41篇
  2008年   27篇
  2007年   19篇
  2006年   20篇
  2005年   7篇
  2004年   10篇
  2003年   8篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   6篇
  1997年   7篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1977年   2篇
排序方式: 共有1408条查询结果,搜索用时 15 毫秒
71.
The present study was an attempt to examine the effects that adding silica aerogel (SA) nanoparticles to epoxy would exert on its mechanical, vibrational, and morphological properties. Neat epoxy was consecutively combined with 1, 2, and 4 wt% of SA nanoparticles. A number of tests of mechanical properties were then performed on the samples, including tests of tensile, bending, compressive, dynamic mechanical thermal, hardness, and Izod impact. Vibration and water uptake tests were also conducted on the samples. The highest modulus and strength values were found in the nanocomposite sample with 4 wt% of SA, and the highest toughness and elongation values were detected in the sample with 1 wt% of SA. Furthermore, adding the SA nanoparticles to the epoxy improved the energy absorption and hardness of the epoxy matrix. The findings from the tests of dynamic mechanical thermal and vibration properties demonstrated that, with an increase in the nanoparticles content in the samples, the values of storage modulus and natural frequency increased while the values of tan δ and damping ratios decreased. A comparison between the values of natural frequency from the vibration test and the values from the Euler–Bernoulli beam theory showed a good agreement between the theoretical and experimental results.  相似文献   
72.
The sphericity and size of ammonium perchlorate (AP) particles significantly influence the properties of composite propellants. As the AP particles become more spherical, the accumulation coefficient increases, the viscosity during casting decreases, and the particle loading and burning rate increase. Hence, the production of micronized AP particles with an average size between 1 and 20 μm is important to increase the loading percentage of AP in the composite propellant. Here, the Taguchi experimental design was used to optimize the solvent-antisolvent crystallization (SAC) process for the preparation of micronized AP particles with higher sphericity. SAC parameters such as the type of antisolvent, the solvent-to-antisolvent ratio, the antisolvent temperature, the stirring speed, and the retention time were investigated at four levels. The type of antisolvent and the solvent-to-antisolvent ratio were found to mainly contribute to improving the sphericity and size of the AP particles, respectively.  相似文献   
73.
Membranes with asymmetric wettability-Janus membranes-have recently received considerable attention for a variety of critical applications. Here, we report on a simple approach to introduce asymmetric wettability into hydrophilic porous domains. Our approach is based on the physicochemical-selective deposition of polytetrafluoroethylene (PTFE) on hydrophilic polymeric substrates. To achieve selective deposition of PTFE, we inhibit the polymerization reaction within the porous domain. We prefill the substrates with glycerol, containing a known amount of free radical inhibitor, and utilize initiated chemical vapor deposition (iCVD) for the polymerization of PTFE. We show that the glycerol/inhibitor mixture hinders the deposition of PTFE within the membrane pores. As a result, the surface of the substrates remains open and porous. The fabricated Janus membranes show stable wetting-resistant properties, evaluated through sessile drop contact angle measurements and direct contact membrane distillation (DCMD).  相似文献   
74.
(Low‐density polyethylene) (LDPE)/clay nanocomposites were prepared by melt blending in a twin‐screw extruder by using different mixing methods. Zinc‐neutralized carboxylate ionomer was used as a compatibilizer. Blown films of the nanocomposites were then prepared. The effect of mixing method on the clay dispersion and properties of the nanocomposites was evaluated by wide‐angle X‐ray diffraction analysis, mechanical properties, thermal properties, and barrier properties. The structure and properties of nanocomposites containing different amounts of nanoclay prepared by selected mixing techniques were also investigated. It was found that melt compounding of Surlyn/clay masterbatch with pure LDPE and Surlyn (two‐step‐a method) results in better dispersion and intercalation of the nanofillers than melt mixing of LDPE/Surlyn/clay masterbatch with pure LDPE and surlyn (two‐step‐b method) and direct mixing of LDPE with clay. The films containing ionomer have good barrier properties. A wide‐angle X‐ray diffraction pattern indicates that intercalation of polymer chains into the clay galleries decreases by increasing the clay content. Barrier properties and tensile modulus of the films were improved by increasing the clay content. In addition, tensile strength increased in the machine direction, but it decreased in the transverse direction by increasing the clay content. DSC results showed that increasing the clay content does not show significant change in the melting and crystallization temperatures. The results of thermogravimetric analysis showed that the thermal stability of the nanocomposites decreased by increasing the clay content more than 1 wt%. J. VINYL ADDIT. TECHNOL., 21:60–69, 2015. © 2014 Society of Plastics Engineers  相似文献   
75.
This study focuses waterproof‐breathable fabric development by applying electrospun web of polyurethane (PU), PAN, and PES directly onto the substrate fabric. Advantages of textile fabrics of elastomeric nanofibrous membranes over gortex specimen are the mass production feasibility, high elastomeric properties, more body comfort parameters, and fabric production without holes and needle traces formation. In this work, we identified the PU nanofibrous membrane as the best and useful web for application in waterproof‐breathable fabrics. Air permeability, water vapor transport rate, and resistance to water penetration average value for the prepared PU fibers web (sample of S1) were about 10 ml/s, 430 g/m2/24 h, 15 cm H2O. To improve waterproof‐breathable characteristics of the membrane, the effects of electrospinning parameters on the fibers morphology and waterproof‐breathable characteristics were investigated. PU concentration of 12% (w/w) and electrospinning voltage of 12 kV were identified as optimal conditions to reach uniform and fine PU nanofibers formation without any beads. Air permeability, water vapor transport rate, and resistance to water penetration average value for the final sample were recorded as about 2.5 ml/s, 840 g/m2/24 h, and 44 cm H2O, correspondingly. POLYM. ENG. SCI. 56:143–149, 2016. © 2015 Society of Plastics Engineers  相似文献   
76.
Latexes of carboxylated styrene-butadiene rubber were prepared via batch emulsion copolymerization with different amounts of acrylic acid in the absence of emulsifier. The effect of acid monomer was investigated in the particle formation and growth. It was observed that the amount of acrylic acid strongly affected the particle formation. The number of particles and thus polymerization rate increased with increasing of the acid content. There was no significant difference in the polymerization rate per particle in all experiments. The results show that in this case particle growth process is less dependent on the acrylic acid amount in comparison with its influence on nucleation stage and then particle number. Several parameters such as polymerization rate and number of latex particle per unit volume of the aqueous phase were calculated. Attempt was made to evaluate the average number of growing chain per particle. Also average particle diameter of the above carboxylated SBR latexes was obtained through some calculations from the direct measurement of average particle diameter in the swollen state by light scattering technique for the first time.  相似文献   
77.
Esfandiyari  Meisam  Norouzi  Mahdi  Haghdoust  Pouria  Jarchi  Saughar 《SILICON》2018,10(6):2711-2716
Silicon - In this paper an optical fiber sensor based on plasmonic resonance of graphene and periodically grating is designed and investigated. The proposed sensor consists of an optical fiber core...  相似文献   
78.
In the published article cited above, by considering corrections made on the eq. (19) which will be discussed in the next section, Figure 6 should be replaced with a following new Figure 1. Hence, and values of 0.379 and 5.68 mol.dm?3, respectively, on pages 1055, 1061, and 1062 should be changed to their accurate values of 0.426 and 5.29 mol.dm?3, respectively.  相似文献   
79.
Conductimetry is one of the online monitoring techniques employed for emulsion polymerization reactions, which can give continuous information about nucleation and growth of particles. The most important factor affecting conductivity sensors performance especially contacting (resistance) types is fouling. To investigate the consequences of fouling, four monomers with different tendencies for fouling were selected: methyl methacrylate, butyl acrylate, styrene, and butadiene. Two types of conductivity sensors were also selected to continuously measure conductivity: a two‐electrode sensor and an inductive sensor, and the performance of these sensors were evaluated based on some criteria such as conductivity behavior, amount of fluctuation, change in cell constant, repeatability, and status of the minimum of conductivity. The results obtained from the contacting sensor showed that fouling significantly decreased the performance of this sensor in different ways even in reaction mixtures having moderate fouling rates. However, the inductive conductivity sensor provided the possibility of reliably measuring conductivity during very high‐fouling and highly unstable emulsion polymerizations with very good repeatability. The capabilities of this sensor also allowed an exact recognition of the important points in the conductivity curves particularly the minimum of conductivity. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44446.  相似文献   
80.
Density function theory is used to study the H2S adsorption on the surface of pristine, Al-, P- and Al&P- doped (4, 4) armchair and (8, 0) zigzag BNNTs. All considered different models for H2S adsorption on the exterior and interior surface of nanotube are optimized by using B3LYP/6-31G (d, P) level of theory. The adsorption energy values (Eads) of the B-I, B-II,C-I, D-I, D-II, F-I, F-II and H-II models are negative, while the Eads values for the A-III, B-III, C-III, D-III, E-III, F-III, G-III and H-III models are positive. On the other hand, Al, P and Al&P doped in all models increase significantly the adsorption energy of H2S on the surface of BNNTs, and so the selectivity of nanotube for adsorbing and making a sensor of H2S increase significantly from original state. The positive values of the charge transfer parameters (ΔN) and more values of the electronic chemical potentials of H2S gas for all studied models demonstrate that H2S gas in this system has a donor electron effect on the nanotube. The MEP results display that a low charge transfer occurs from H2S gas toward nanotube, resulting in a weak ionic bonding in the BNNTs’ surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号