首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   37篇
  国内免费   5篇
电工技术   13篇
综合类   2篇
化学工业   154篇
金属工艺   20篇
机械仪表   15篇
建筑科学   11篇
矿业工程   1篇
能源动力   33篇
轻工业   29篇
水利工程   5篇
石油天然气   8篇
无线电   48篇
一般工业技术   78篇
冶金工业   44篇
原子能技术   1篇
自动化技术   118篇
  2024年   1篇
  2023年   4篇
  2022年   12篇
  2021年   27篇
  2020年   20篇
  2019年   26篇
  2018年   32篇
  2017年   24篇
  2016年   38篇
  2015年   21篇
  2014年   28篇
  2013年   60篇
  2012年   21篇
  2011年   40篇
  2010年   28篇
  2009年   38篇
  2008年   26篇
  2007年   21篇
  2006年   10篇
  2005年   8篇
  2004年   6篇
  2003年   7篇
  2002年   6篇
  2001年   4篇
  2000年   7篇
  1999年   2篇
  1998年   22篇
  1997年   9篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1977年   2篇
  1976年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有580条查询结果,搜索用时 15 毫秒
31.
Reaction of Al metal with water is a well-known technique for large scale production of hydrogen. However, this method suffers from kinetic limitations due to formation of a passivation layer on Al, preventing optimal operations. Using high resolution Scanning Kelvin Probe Force Microscopy (SKPFM), we show the origin of formation of 'nano-galvanic couple' on in situ formed nano-aluminum amalgam surfaces in a water splitting system; passivation based limitations are completely bypassed in this approach. Furthermore, they offer an opportunity to beneficiate and recover mercury in contaminated water. The nano-galvanic corrosion due to substantial lateral variation in surface contact potential is responsible for the observed high throughput of hydrogen production (720 mL/min per 0.5 g Al salt). It may be noted that this process fares better than in situ prepared nano-Al based hydrogen production, wherein 600 mL/min of hydrogen is obtained for 0.5 g Al salt. Investigations using Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) provide evidence for passivation-bypassed hydrolysis and favourable kinetics for in situ derived nano-AlHg hydrolytic agents (when compared to nano-Al). This study, to the best of our knowledge, reports the first direct proof of nano-galvanic couple formation on in-situ prepared nanoaluminum amalgam surface; paving a direct way to overcome the long standing passivation problem in Al hydrolysis. It is found that the hydrogen production rate and standard deviation (SD) of the contact potential of nanoaluminum amalgam are directly related to the rate of addition of the reducing agent, offering an opportunity for kinetic control for the in situ hydrolytic process.  相似文献   
32.
Conditional and composite temporal CSPs   总被引:2,自引:2,他引:0  
Constraint Satisfaction Problems (CSPs) have been widely used to solve combinatorial problems. In order to deal with dynamic CSPs where the information regarding any possible change is known a priori and can thus be enumerated beforehand, conditional constraints and composite variables have been studied in the past decade. Indeed, these two concepts allow the addition of variables and their related constraints in a dynamic manner during the resolution process. More precisely, a conditional constraint restricts the participation of a variable in a feasible scenario while a composite variable allows us to express a disjunction of variables where only one will be added to the problem to solve. In order to deal with a wide variety of real life applications under temporal constraints, we present in this paper a unique temporal CSP framework including numeric and symbolic temporal information, conditional constraints and composite variables. We call this model, a Conditional and Composite Temporal CSP (or CCTCSP). To solve the CCTCSP we propose two methods respectively based on Stochastic Local Search (SLS) and constraint propagation. In order to assess the efficiency in time of the solving methods we propose, experimental tests have been conducted on randomly generated CCTCSPs. The results demonstrate the superiority of a variant of the Maintaining Arc Consistency (MAC) technique (that we call MAX+) over the other constraint propagation strategies, Forward Checking (FC) and its variants, for both consistent and inconsistent problems. It has also been shown that, in the case of consistent problems, MAC+ outperforms the SLS method Min Conflict Random Walk (MCRW) for highly constrained CCTCSPs while both methods have comparable time performance for under and middle constrained problems. MCRW is, however, the method of choice for highly constrained CCTCSPs if we decide to trade search time for the quality of the solution returned (number of solved constraints).  相似文献   
33.
The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.  相似文献   
34.
This research work is devoted to the study of the thermal transport properties of nanocomposites based on PP/EPDM/Clay (Polypropylene/Ethylene Propylene Diene Monomer/Clay). Six different formulations were designed and the corresponding nanocomposites (with 0, 2, 4 and 6% of clay) were prepared via melt mixing. To achieve the goals, densities, specific heat capacities and thermal conductivities were measured as function of temperature and nanocomposites compositions. A new and novel methodology was developed to determine the thermal conductivity which was based on an inverse heat transfer problem. First, assuming a linear relationship for thermal conductivity, the transient heat transfer equation in a solid specimen was numerically solved. The obtained temperature profile was used as the input to an optimisation technique based on genetic algorithm and the parameters of the thermal conductivity relationship were found. The results showed that the specific heat increases both with increasing of temperature and clay contents. It is also increased with the addition of the rubber to the blend. In all samples, the thermal conductivity decreases with increasing of temperature with a linear relationship. In addition, at relatively constant ratios of PP/EPDM, thermal conductivity of nanocomposite and its sensitivity increase with temperature rise. Moreover, at constant value of clay content, the thermal conductivity is decreased with increase of rubber content. The explanations to above findings were also presented and discussed.  相似文献   
35.
Thermoplastic elastomer nanocomposites based on acrylonitrile butadiene rubber (NBR) and polyamide 6 (PA6), with acid functionalized single‐wall carbon nanotubes (SWNT), were prepared via a direct melt‐mixing process in an internal mixer. The influence of SWNT content (0, 0.5, 1, 1.5) on morphological properties of PA6/NBR with different ratios (80/20, 70/30, 60/40) were then investigated. Characterization of nanocomposites was conducted by using transmission electron microscopy, scanning electron microscopy, differential scanning calorimetry, and mechanical properties. Scanning electron microscopy micrographs proved the droplet‐matrix blend morphology in which the size of NBR droplets decreased as the SWNT loading increased, suggesting dispersion of SWNT in the PA6 phase. It was further proved by transmission electron microscopy images, showing homogenous dispersion of SWNT in the PA6 phase. Differential scanning calorimetry results showed a slightly reduced percentage of crystallinity in samples containing SWNT. The mechanical properties of nanocomposites indicated an enhancement in tensile strength, modulus, and hardness on increasing SWNT content. J. VINYL ADDIT. TECHNOL., 22:336–341, 2016. © 2014 Society of Plastics Engineers  相似文献   
36.
Dynamically vulcanized thermoplastic elastomer (TPE) nanocomposites based on polypropylene (PP), ethylene‐propylene diene monomer (EPDM) and cloisite 15A were prepared via direct melt mixing in a co‐rotating twin‐screw extruder. The mixing process was carried out with optimized processing parameters (barrel temperature = 180°C; screw speed = 150 rpm; and feeding rate = 0.2 kg/hr). The formulation used to prepare the nanocomposites was fixed to 75/20/5 (PP/EPDM/Cloisite©15A), expressed in mass fraction. Effect of mixing sequence on the properties of vulcanized and unvulcanized (TPE) nanocomposites prepared under similar conditions was investigated using X‐ray diffraction (XRD) and a tensile testing machine. Results showed that the sequence of mixing does affect the properties of final TPE nanocomposites. Accordingly, nanocomposite samples prepared through mixing the preblended PP/clay masterbatch with EPDM phase, show better clay dispersion within the polymer matrix. J. VINYL ADDIT. TECHNOL., 22:320–325, 2016. © 2014 Society of Plastics Engineers  相似文献   
37.
Aghaeipour  Zahra  Naderi  Ali 《SILICON》2020,12(11):2611-2618
Silicon - This paper proposes an efficient structure for nanoscale silicon on insulator (SOI) MOSFETs. Two P+ pockets are considered in buried oxide, a pocket under source region and another under...  相似文献   
38.
As an approach to improve the resistance of protective coatings to the disbondment, modification of the formulation through incorporation of zinc aluminum polyphosphate anticorrosion pigment representing third generation phosphates was examined in this paper. The data obtained from cathodic disbonding test, electrochemical impedance spectroscopy and pull-off indicated that introduction of zinc aluminum polyphosphate within epoxy coating could provide improved resistance to cathodic disbonding as well as superior adhesion strength. The superiority in the presence of the modified pigment was connected to deposition of a layer at the disbonding front and locally controlled pH as well. The precipitation restricting active zone available for electrochemical reaction was confirmed by SEM.  相似文献   
39.
In order to improve corrosion resistance of the stainless steel structures exposed to acidic media, a variety of corrosion inhibitors particularly organic ones have been examined. In this work, the corrosion inhibition performance of two azole derivatives namely benzotriazole and benzothiazole on stainless steel in 1 M sulfuric acid was studied through taking advantage of electrochemical techniques as well as SEM surface analysis. Revealing effectiveness of the two inhibitors, the AC impedance spectra indicated no change in corrosion mechanism. The noise resistance and average current density as parameters extracted from electrochemical noise measurements revealed the direct proportion of inhibition function to the inhibitor concentration. In accordance with the polarization curves, benzotriazole and benzothiazole appeared to act as mixed type inhibitors. The adsorption of the two corrosion inhibitors was shown to obey Langmuir isotherm. Moreover, it was deduced from the isotherm that the type of adsorption can be physical and chemical in nature. The corrosion damage mitigation was also confirmed through SEM in the presence of benzothiazole.  相似文献   
40.
Nitrate reduction in a simulated free-water surface wetland system   总被引:3,自引:0,他引:3  
The feasibility of using a constructed wetland for treatment of nitrate-contaminated groundwater resulting from the land application of biosolids was investigated for a site in the southeastern United States. Biosolids degradation led to the release of ammonia, which upon oxidation resulted in nitrate concentrations in the upper aquifer in the range of 65-400 mg N/L. A laboratory-scale system was constructed in support of a pilot-scale project to investigate the effect of temperature, hydraulic retention time (HRT) and nitrate and carbon loading on denitrification using soil and groundwater from the biosolids application site. The maximum specific reduction rates (MSRR), measured in batch assays conducted with an open to the atmosphere reactor at four initial nitrate concentrations from 70 to 400 mg N/L, showed that the nitrate reduction rate was not affected by the initial nitrate concentration. The MSRR values at 22 °C for nitrate and nitrite were 1.2 ± 0.2 and 0.7 ± 0.1 mg N/mg VSSCOD-day, respectively. MSRR values were also measured at 5, 10, 15 and 22 °C and the temperature coefficient for nitrate reduction was estimated at 1.13. Based on the performance of laboratory-scale continuous-flow reactors and model simulations, wetland performance can be maintained at high nitrogen removal efficiency (>90%) with an HRT of 3 days or higher and at temperature values as low as 5 °C, as long as there is sufficient biodegradable carbon available to achieve complete denitrification. The results of this study show that based on the climate in the southeastern United States, a constructed wetland can be used for the treatment of nitrate-contaminated groundwater to low, acceptable nitrate levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号