首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   35篇
  国内免费   3篇
电工技术   5篇
综合类   1篇
化学工业   101篇
金属工艺   14篇
机械仪表   20篇
建筑科学   11篇
能源动力   33篇
轻工业   31篇
水利工程   9篇
石油天然气   1篇
无线电   94篇
一般工业技术   132篇
冶金工业   25篇
原子能技术   2篇
自动化技术   125篇
  2024年   2篇
  2023年   12篇
  2022年   35篇
  2021年   38篇
  2020年   21篇
  2019年   33篇
  2018年   41篇
  2017年   23篇
  2016年   22篇
  2015年   19篇
  2014年   24篇
  2013年   51篇
  2012年   41篇
  2011年   29篇
  2010年   31篇
  2009年   22篇
  2008年   26篇
  2007年   21篇
  2006年   25篇
  2005年   19篇
  2004年   9篇
  2003年   13篇
  2002年   10篇
  2001年   10篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1990年   1篇
  1978年   1篇
排序方式: 共有604条查询结果,搜索用时 31 毫秒
81.
Wireless Personal Communications - Multiple-input multiple-output (MIMO) systems have attracted increased interest due to their capability to achieve higher multiplexing and diversity gains. In...  相似文献   
82.
Ever growing demand for higher data rates requires appropriate radiation systems with large bandwidth and stable gain. Microstrip antennas with unidirectional radiation patterns and stable gain are most useful for this purpose. A ground plane defect of microstrip patch antenna is used to breed multiband applications. As a result, the performance of gain, directivity, and bandwidth is enhanced, the geometry and shape of an ultrawideband (UWB) antenna are simplified, and its size is reduced. Thus, it results in the efficient performance with respect to wideband operation. A novel band notching of microstrip truncated UWB antenna is implemented for insusceptibility in the range 5.2–5.8 GHz. The suggested structure contains circular truncated and T-shaped slots for band notching. The optimal results can be obtained by selecting the antenna parameters. Advantages of the proposed antenna include small size, better impedance match and simple design. Details of the suggested and observational solutions are demonstrated in this paper. The S11 parameter of antenna is–45.5 dB at a resonant frequency of 4.6, 5.5, and 9.8 GHz. The gain of antenna is 5.47 dB, and the value of VSWR is smaller than 2, which makes the proposed structure an ideal choice for its application in wireless communication, 5G and IoT.  相似文献   
83.
In this paper, we have evaluated the performance of a low-density parity-check (LDPC)-coded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) free space optical (FSO) communication system. Closed form expressions for the average bit error rate and throughput with diversity using equal gain combining have been obtained for the system under consideration. The Monte Carlo simulation has been carried out for the verification of the results. The performance of the QPSK and 16 QAM modulations is evaluated for different weather and atmospheric turbulence conditions. The results are also compared for both, QPSK and 16 QAM for SISO–OFDM, \(2\times 2\) and \(4 \times 4\) MIMO–OFDM FSO communication system. The results show that the performance of the system under consideration improves, as we move from SISO–OFDM to \(4 \times 4\) MIMO–OFDM. The results also show that the effect of weather is very much pronounced on the system and the performance in terms of average bit error rate of QPSK is better than 16 QAM in the presence of every weather condition. However, the later provides better throughput. Regular LDPC codes with code rate 1/2 have been applied to the simulated results, yielding high coding gains. Coding gain of 29.5 and 22 dB is achieved for QPSK and 16 QAM, respectively, for \(4 \times 4\) MIMO–OFDM.  相似文献   
84.
In this paper, we introduce and test two new sequence-based protein scoring systems (i.e. S1, S2) for assessing the likelihood that a given protein hybrid will be functional. By binning together amino acids with similar properties (i.e. volume, hydrophobicity and charge) the scoring systems S1 and S2 allow for the quantification of the severity of mismatched interactions in the hybrids. The S2 scoring system is found to be able to significantly functionally enrich a cytochrome P450 library over other scoring methods. Given this scoring base, we subsequently constructed two separate optimization formulations (i.e. OPTCOMB and OPTOLIGO) for optimally designing protein combinatorial libraries involving recombination or mutations, respectively. Notably, two separate versions of OPTCOMB are generated (i.e. model M1, M2) with the latter allowing for position-dependent parental fragment skipping. Computational benchmarking results demonstrate the efficacy of models OPTCOMB and OPTOLIGO to generate high scoring libraries of a prespecified size.  相似文献   
85.
The primary objective of this work was to evaluate the influence of various reinforcements and matrix materials on the dynamic hardness of polymer matrix materials (PMC). Therefore, the impact of a WC ball, using a gravity drop system, was studied on PMCs. The two parameters, coefficient of restitution and dynamic hardness, of PMCs were determined. The mechanical properties of the PMCs were evaluated, and the correlation of the two parameters with the mechanical properties of PMCs was attempted.  相似文献   
86.
Cytochromes P450 (CYP) are one of the major xenobiotic metabolizing enzymes with increasing importance in pharmacogenetics. The CYP2C9 enzyme is responsible for the metabolism of a wide range of clinical drugs. More than sixty genetic variations have been identified in CYP2C9 with many demonstrating reduced activity compared to the wild-type (WT) enzyme. The CYP2C9*8 allele is predominantly found in persons of African ancestry and results in altered clearance of several drug substrates of CYP2C9. The X-ray crystal structure of CYP2C9*8, which represents an amino acid variation from arginine to histidine at position 150 (R150H), was solved in complex with losartan. The overall conformation of the CYP2C9*8-losartan complex was similar to the previously solved complex with wild type (WT) protein, but it differs in the occupancy of losartan. One molecule of losartan was bound in the active site and another on the surface in an identical orientation to that observed in the WT complex. However, unlike the WT structure, the losartan in the access channel was not observed in the *8 complex. Furthermore, isothermal titration calorimetry studies illustrated weaker binding of losartan to *8 compared to WT. Interestingly, the CYP2C9*8 interaction with losartan was not as weak as the CYP2C9*3 variant, which showed up to three-fold weaker average dissociation constant compared to the WT. Taken together, the structural and solution characterization yields insights into the similarities and differences of losartan binding to CYP2C9 variants and provides a useful framework for probing the role of amino acid substitution and substrate dependent activity.  相似文献   
87.
A novel tetrafunctional epoxy resin, namely N,N,N′N′-tetrakis(2,3-epoxypropyl)-4,4′-(1,4-phenylenedioxy)dianiline, has been synthesized. The curing kinetics has been studied by differential scanning calorimetry (DSC) using various amine curing agents. Thermal stabilities of the cured products have been investigated by thermogravimetric (TG) analyses. The overall activation energies for the curing reactions are observed to be in the range 63.6–196.7 kJ·mol–1. The cured products have good thermal stability.  相似文献   
88.
The purpose of this study was to determine and compare the bioadhesive profiles of hydroxypropylcellulose (HPC) polymer matrices as a function of Δ9-tetrahydrocannabinol (THC) content. In addition, the effect of processing temperature on the stability of THC and its extent of degradation to cannabinol (CBN) was investigated. A hot-melt cast molding method was used to prepare HPC polymer matrix systems incorporated with THC at 0, 4, 8, and 16 percent. Bioadhesive measurements including peak adhesive force, area under the curve, and elongation at adhesive failure were recorded utilizing the TA.XT2i Texture Analyzer. Data obtained from these tests at various contact time intervals suggested that the incorporation of THC led to an increase in the bioadhesive strength of the HPC polymer matrices. To determine the stability of THC and the resulting CBN content in the matrices, three different processing temperatures were utilized (120, 160, and 200°C). Post-production High Performance Liquid Chromotography (HPLC) analysis revealed that the processed systems contained at least 94% of THC and the relative percent formation of CBN was 0.5% at 120°C and 0.4% at 160°C compared to 1.6% at 200°C. These findings indicate that the cannabinoid may be a plausible candidate for incorporation into systems utilizing hot-melt extrusion techniques for the development of an effective mucoadhesive transmucosal matrix system for delivery of THC.  相似文献   
89.
We present in this paper a fundamental hydrothermal investigation of the next generation interlayer integrated water cooled three-dimensional (3D) chip stacks, with high volumetric heat generation. Such investigation of flow through microcavities with embedded heat transfer structures such as micro pin-fin arrays and microchannels is crucial for the successful realization of 3D chip stacks. We focus mainly on the complex physics of the entrance region of the cooling microcavities in order to assess its importance. The flow and heat transfer in the entrance region is strongly influenced by developing boundary layers and, as we show herein, the development lengths can occupy a significant portion of the microcavity due to the size restrictions of the 3D chip stack. These effects make a fundamental understanding of conjugate heat transfer in microcavities with heat transfer structures a necessity. The flow field and heat transfer in the entrance region are characterized by means of correlations determining the effective coolant permeability as well as the heat transfer coefficient as a function of the streamwise coordinate x, the flow Reynolds number (Re) and the Prandtl number. Based on a thermal non-equilibrium porous medium model relying on these results, a substantially improved estimation of pressure drop and temperature distribution inside the chip stack is realized. The modeling results are validated against measurements on a 3D chip stack simulator. The range of flow rates and thermal loads in the hot spots of the chip stack, over which it is crucial to consider the developing hydrothermal effects, are analyzed and discussed in detail. Moreover, microchannel and micro pin-fin structures are compared, showing more than 20% increased performance of the latter for all operating conditions investigated.  相似文献   
90.
We report an experimental study on exergetically efficient electronics cooling using hot water as coolant. It is shown that water temperatures as high as 60 °C are sufficient to cool microprocessors with over 90% first law (energy based) efficiency. The chip used in our experiment is kept at temperatures of 80 °C or below so as not to exceed any allowable industrial specifications for maximum microprocessor chip temperature. The use of hot water as coolant will eliminate the requirement for chillers typically used in air-cooled data centers and, therefore, significantly reduce the power consumption. An exergy analysis shows that a six fold rise in second law (exergy based) efficiency is achieved by switching the water inlet temperature from 30 °C to 60 °C. The resulting high exergy at the heat sink outlet is a measure of the potential usefulness of the waste heat of data centers, thereby helping to design data centers with minimal carbon footprint. A new metric for the economic value of the recovered heat, based on costs for electricity and fossil fuels, heat recovery efficiency and an application specific utility function, is introduced to underscore the benefits of hot water cooling. This new concept shows that the economic value of the heat recovered from data centers can be much higher than its thermodynamic value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号