46.
Prodigious demand for fast performance-ultra low power electronic devices has insinuated the discovery of circuit style that promises reduced propagation delay (t p ), as well as low power dissipation (PWR). MOS current mode logic (MCML) style has emerged as a promising logic style that offers high speed of operation at the expense of acceptable power dissipation. This paper proposes a MCML full adder which employs a load controller circuit. It compares MCML full adder with hybrid-CMOS full adder in terms of various design metrics in superthreshold as well as subthreshold regions. MCML topology with load controller offers a high speed of operation and low power dissipation in superthreshold region. Same circuit arrangement, when operated in subthreshold region also delivers higher operating speed with ultralow power dissipation compared to its hybrid-CMOS counterpart. Power dissipation analysis established MCML based full adder more robust compared to its hybrid-CMOS counterpart. In particular, MCML full adder design achieves 3.77× (2.38×) improvement in propagation delay, 10.43× (3.45×) improvement in average power dissipation, 39.43× (8.21×) lower power-delay product (PDP) and 149.07× (19.55×) improvement in energy-delay product (EDP) in superthreshold (subthreshold) regions of operation at 16-nm technology node. The above results are also validated using TSMC’s industry standard 0.18-μm technology model parameters and a similar trend is observed in the design metrics of the MCML and hybrid-CMOS full adder circuits. In addition, noise performance of the above mentioned circuits is also carried out. It is observed that the noise induced by the hybrid-CMOS full adder is about 14× to that of the MCML full adder.
相似文献