首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2373篇
  免费   144篇
  国内免费   1篇
电工技术   7篇
化学工业   1055篇
金属工艺   21篇
机械仪表   41篇
建筑科学   77篇
矿业工程   5篇
能源动力   41篇
轻工业   565篇
水利工程   15篇
石油天然气   7篇
无线电   80篇
一般工业技术   293篇
冶金工业   69篇
原子能技术   6篇
自动化技术   236篇
  2024年   5篇
  2023年   48篇
  2022年   276篇
  2021年   306篇
  2020年   84篇
  2019年   70篇
  2018年   88篇
  2017年   84篇
  2016年   98篇
  2015年   75篇
  2014年   95篇
  2013年   157篇
  2012年   137篇
  2011年   163篇
  2010年   109篇
  2009年   117篇
  2008年   92篇
  2007年   92篇
  2006年   76篇
  2005年   62篇
  2004年   54篇
  2003年   42篇
  2002年   29篇
  2001年   22篇
  2000年   14篇
  1999年   6篇
  1998年   18篇
  1997年   13篇
  1996年   15篇
  1995年   13篇
  1994年   5篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   6篇
  1985年   2篇
  1983年   2篇
  1980年   1篇
  1977年   3篇
  1976年   1篇
  1973年   4篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1934年   1篇
  1933年   1篇
  1932年   2篇
排序方式: 共有2518条查询结果,搜索用时 15 毫秒
81.
Carnivorous plants are exemplary natural sources of secondary metabolites with biological activity. However, the therapeutic antimicrobial potential of these compounds is limited due to intrinsic resistance of selected bacterial pathogens, among which Pseudomonas aeruginosa represents an extreme example. The objective of the study was to overcome the intrinsic resistance of P. aeruginosa by combining silver nanoparticles (AgNPs) with secondary metabolites from selected carnivorous plant species. We employed the broth microdilution method, the checkerboard titration technique and comprehensive phytochemical analyses to define interactions between nanoparticles and active compounds from carnivorous plants. It has been confirmed that P. aeruginosa is resistant to a broad range of secondary metabolites from carnivorous plants, i.e., naphthoquinones, flavonoids, phenolic acids (MBC = 512 µg mL−1) and only weakly sensitive to their mixtures, i.e., extracts and extracts’ fractions. However, it was shown that the antimicrobial activity of extracts and fractions with a significant level of naphthoquinone (plumbagin) was significantly enhanced by AgNPs. Our studies clearly demonstrated a crucial role of naphthoquinones in AgNPs and extract interaction, as well as depicted the potential of AgNPs to restore the bactericidal activity of naphthoquinones towards P. aeruginosa. Our findings indicate the significant potential of nanoparticles to modulate the activity of selected secondary metabolites and revisit their antimicrobial potential towards human pathogenic bacteria.  相似文献   
82.
Histone deacetylase inhibitors (HDIs) are promising anti-cancer agents that inhibit proliferation of many types of cancer cells including breast carcinoma (BC) cells. In the present study, we investigated the influence of the Notch1 activity level on the pharmacological interaction between cisplatin (CDDP) and two HDIs, valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), in luminal-like BC cells. The type of drug–drug interaction between CDDP and HDIs was determined by isobolographic analysis. MCF7 cells were genetically modified to express differential levels of Notch1 activity. The cytotoxic effect of SAHA or VPA was higher on cells with decreased Notch1 activity and lower for cells with increased Notch1 activity than native BC cells. The isobolographic analysis demonstrated that combinations of CDDP with SAHA or VPA at a fixed ratio of 1:1 exerted additive or additive with tendency toward synergism interactions. Therefore, treatment of CDDP with HDIs could be used to optimize a combined therapy based on CDDP against Notch1-altered luminal BC. In conclusion, the combined therapy of HDIs and CDDP may be a promising therapeutic tool in the treatment of luminal-type BC with altered Notch1 activity.  相似文献   
83.
Coumarins belong to a group of secondary metabolites well known for their high biological activities including antibacterial and antifungal properties. Recently, an important role of coumarins in plant resistance to pathogens and their release into the rhizosphere upon pathogen infection was discovered. It is also well documented that coumarins play a crucial role in the Arabidopsis thaliana growth under Fe-limited conditions. However, the mechanisms underlying interplay between plant resistance, accumulation of coumarins and Fe status, remain largely unknown. In this work, we investigated the effect of both mentioned factors on the disease severity using the model system of Arabidopsis/Dickeya spp. molecular interactions. We evaluated the disease symptoms in Arabidopsis plants, wild-type Col-0 and its mutants defective in coumarin accumulation, grown in hydroponic cultures with contrasting Fe regimes and in soil mixes. Under all tested conditions, Arabidopsis plants inoculated with Dickeya solani IFB0099 strain developed more severe disease symptoms compared to lines inoculated with Dickeya dadantii 3937. We also showed that the expression of genes encoding plant stress markers were strongly affected by D. solani IFB0099 infection. Interestingly, the response of plants to D. dadantii 3937 infection was genotype-dependent in Fe-deficient hydroponic solution.  相似文献   
84.
COVID-19 is mainly considered a respiratory illness, but since SARS-CoV-2 uses the angiotensin converting enzyme 2 receptor (ACE2) to enter human cells, the kidney is also a target of the viral infection. Acute kidney injury (AKI) is the most alarming condition in COVID-19 patients. Recent studies have confirmed the direct entry of SARS-CoV-2 into the renal cells, namely podocytes and proximal tubular cells, but this is not the only pathomechanism of kidney damage. Hypovolemia, cytokine storm and collapsing glomerulopathy also play an important role. An increasing number of papers suggest a strong association between AKI development and higher mortality in COVID-19 patients, hence our interest in the matter. Although knowledge about the role of kidneys in SARS-CoV-2 infection is changing dynamically and is yet to be fully investigated, we present an insight into the possible pathomechanisms of AKI in COVID-19, its clinical features, risk factors, impact on hospitalization and possible ways for its management via renal replacement therapy.  相似文献   
85.
Excess adiposity is associated with chronic inflammation, which takes part in the development of obesity-related complications. The aim of this study was to establish whether subcutaneous (SAT) or visceral (VAT) adipose tissue plays a major role in synthesis of pro-inflammatory cytokines. Concentrations of interleukins (IL): 1β, 6, 8 and 15 were measured at the protein level by an ELISA-based method and on the mRNA level by real-time PCR in VAT and SAT samples obtained from 49 obese (BMI > 40 kg/m2) and 16 normal-weight (BMI 20–24.9 kg/m2) controls. IL-6 and IL-15 protein concentrations were higher in SAT than in VAT for both obese (p = 0.003 and p < 0.0001, respectively) and control individuals (p = 0.004 and p = 0.001, respectively), while for IL-1β this was observed only in obese subjects (p = 0.047). What characterized obese individuals was the higher expression of IL-6 and IL-15 at the protein level in VAT compared to normal-weight controls (p = 0.047 and p = 0.016, respectively). Additionally, obese individuals with metabolic syndrome had higher IL-1β levels in VAT than did obese individuals without this syndrome (p = 0.003). In conclusion, concentrations of some pro-inflammatory cytokines were higher in SAT than in VAT, but it was the increased pro-inflammatory activity of VAT that was associated with obesity and metabolic syndrome.  相似文献   
86.
Phenolic compounds have a high importance in olive oil because of their effect on shelf life and sensory properties. This study reports on the HPLC profiles of the phenolic compounds of virgin olive oils obtained from Arbequina olives from the harvesting in a super‐intensive orchard under a linear irrigation system. In addition, phenolic content, carotenoid and chlorophyllic pigments, and oxidative stability were analyzed. Total phenol content and 3,4‐DHPEA‐EDA increased up to a maximum throughout the ripening process. The simple phenols tyrosol and hydroxytyrosol acetate increased throughout the ripening process, however, there was not found a clear trend in hydroxytyrosol content. Minor constituents such as vanillic acid and p‐coumaric acid increased up to a maximum and then decreased, since vanillin decreased progressively throughout the time of harvest. 3,4‐DHPEA‐EDA and lignans were present in considerable amounts in the studied samples, while oleuropein aglycone was present in a low amount. Total phenol content and oil stability followed the same trend throughout the study, so a very good correlation was established between them. Total secoiridoids and, specifically, 3,4‐DHPEA‐EDA seemed to be responsible for oil stability. The pigment content decreased during ripening, and not a positive correlation was found between pigments and oil stability. Practical applications : The results can be used to determine the best time for harvesting in order to obtain olive oils with different phenols and pigment contents. This is important for sensory characteristics of the olive oils and also for olive oil stability.  相似文献   
87.
This study examined the effect of the freeze‐thaw process on the physical properties of films prepared from scleroglucan (Scl) hydrogels, suitable for drug delivery applications. Films made from Scl, using glycerol as plasticizer, were prepared from hydrogels by two procedures: a room temperature drying (RTD) method and a freeze‐thaw cyclic process, before the application of RTD, which results in a reinforced physically cross‐linked network. Films were characterized by studies of water vapor transmission (WVT), swelling, tensile tests, ESEM microscopy, FTIR, and drug release measurements. These determinations showed significant differences between films obtained by both treatments. The films prepared through freeze‐thaw cycles showed an important increase of the tensile strength with respect to those corresponding to films only air dried and a decreasing swelling degree in direct relationship to the number of freeze‐thaw cycles. A model drug, Theophylline, was included in these biocompatible films for in vitro drug release measurements, using a flat Franz cell. The physical differences observed between Scl films prepared with both methods can be explained proposing that the number of crosslinking points by hydrogen bonding increase when increasing the number of freezing and thawing cycles used for film preparation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
88.
The human enzymes aldose reductase (AR) and AKR1B10 have been thoroughly explored in terms of their roles in diabetes, inflammatory disorders, and cancer. In this study we identified two new lead compounds, 2‐(3‐(4‐chloro‐3‐nitrobenzyl)‐2,4‐dioxo‐3,4‐dihydropyrimidin‐1(2H)‐yl)acetic acid (JF0048, 3 ) and 2‐(2,4‐dioxo‐3‐(2,3,4,5‐tetrabromo‐6‐methoxybenzyl)‐3,4‐dihydropyrimidin‐1(2H)‐yl)acetic acid (JF0049, 4 ), which selectively target these enzymes. Although 3 and 4 share the 3‐benzyluracil‐1‐acetic acid scaffold, they have different substituents in their aryl moieties. Inhibition studies along with thermodynamic and structural characterizations of both enzymes revealed that the chloronitrobenzyl moiety of compound 3 can open the AR specificity pocket but not that of the AKR1B10 cognate. In contrast, the larger atoms at the ortho and/or meta positions of compound 4 prevent the AR specificity pocket from opening due to steric hindrance and provide a tighter fit to the AKR1B10 inhibitor binding pocket, probably enhanced by the displacement of a disordered water molecule trapped in a hydrophobic subpocket, creating an enthalpic signature. Furthermore, this selectivity also occurs in the cell, which enables the development of a more efficient drug design strategy: compound 3 prevents sorbitol accumulation in human retinal ARPE‐19 cells, whereas 4 stops proliferation in human lung cancer NCI‐H460 cells.  相似文献   
89.
A series of 21 novel, structurally diverse ω‐(isothiocyanato)alkylphosphinates and phosphine oxides (ITCs) were designed and synthesized in moderate to good yields. The synthesized compounds were evaluated for in vitro antiproliferative activity using LoVo and LoVo/DX cancer cell lines. The biological activity of the synthesized compounds was higher than that of natural isothiocyanates such as benzyl isothiocyanate or sulforaphane. The antiproliferative activity of selected ITCs was also tested on selected cancer cell lines: A549, MESSA and MESSA/DX‐5, HL60 and HL60MX2, BALB/3T3, and 4T1. These compounds were assessed for their mechanism of action as inducers of cell‐cycle arrest and apoptosis. Ethyl (6‐isothiocyanatohexyl)(phenyl)phosphinate ( 71 ) was tested in vivo on the 4T1 cell line and demonstrated moderate antitumor activity, similar to that benzyl isothiocyanate and cyclophosphamide.  相似文献   
90.
The first example of boron-containing soybean oil based copolymers was prepared from soybean oil, styrene, divinylbenzene and 4-vinylphenyl boronic acid by cationic polymerization using boron trifluoride etherate as initiator. Soxhlet extraction and NMR spectroscopy indicate that the copolymers consist of a crosslinked network plasticized with varying amounts of oligomers and unreacted oil. The thermal degradation mechanism was studied and the thermal, dynamomechanical and flame retardant properties of these materials were examined. Thermosets with glass transition temperatures ranging from 43 to 60 °C, which are thermally stable below 350 °C and with LOI values from 23.7 to 25.6 were obtained. The LOI tests indicate that the flame retardant properties of vegetable oil can be improved by adding boron covalently bonded to the polymer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号