首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1801篇
  免费   35篇
  国内免费   4篇
电工技术   114篇
综合类   5篇
化学工业   366篇
金属工艺   36篇
机械仪表   56篇
建筑科学   22篇
能源动力   148篇
轻工业   127篇
水利工程   1篇
无线电   189篇
一般工业技术   297篇
冶金工业   257篇
原子能技术   57篇
自动化技术   165篇
  2023年   7篇
  2022年   22篇
  2021年   27篇
  2020年   24篇
  2019年   16篇
  2018年   23篇
  2017年   24篇
  2016年   30篇
  2015年   30篇
  2014年   47篇
  2013年   92篇
  2012年   48篇
  2011年   93篇
  2010年   77篇
  2009年   79篇
  2008年   93篇
  2007年   74篇
  2006年   43篇
  2005年   60篇
  2004年   74篇
  2003年   55篇
  2002年   43篇
  2001年   45篇
  2000年   40篇
  1999年   48篇
  1998年   75篇
  1997年   80篇
  1996年   68篇
  1995年   39篇
  1994年   40篇
  1993年   27篇
  1992年   29篇
  1991年   25篇
  1990年   10篇
  1989年   19篇
  1988年   20篇
  1987年   18篇
  1986年   21篇
  1985年   23篇
  1984年   22篇
  1983年   21篇
  1982年   17篇
  1981年   7篇
  1980年   7篇
  1979年   11篇
  1978年   8篇
  1977年   12篇
  1976年   13篇
  1974年   3篇
  1973年   4篇
排序方式: 共有1840条查询结果,搜索用时 15 毫秒
71.
Yttria-ceria-doped tetragonal zirconia (Y,Ce)-TZP)/alumina (Al2O3) composites were fabricated by hot isostatic pressing at 1400° to 1450°C and 196 MPa in an Ar–O2 atmosphere using the fine powders prepared by hydrolysis of ZrOCl2 solution. The composites consisting of 25 wt% Al2O3 and tetragonal zirconia with compositions 4 mol% YO1.5–4 mol% CeO2–ZrO2 and 2.5 mol% YO1.5–5.5 mol% CeO2–ZrO2 exhibited mean fracture strength as high as 2000 MPa and were resistant to phase transformation under saturated water vapor pressure at 180°C (1 MPa). Postsintering hot isostatic pressing of (4Y, 4Ce)-TZP/Al2O3 and (2.5Y, 5.5Ce)-TZP/Al2O3 composites was useful to enhance the phase stability under hydrothermal conditions and strength.  相似文献   
72.
Submicrometer SiO2-Al2O3 powders with compositions of 46.5 to 76.6 wt% Al2O3 were prepared by hydrolysis of mixed alkoxides. Phase change, mullite composition, and particle size of powders with heating were analyzed by DTA, XRD, IR, BET, and TEM. As-produced amorphous powders partially transformed to mullite and Al-Si spinel at around 980°C. The compositions of mullite produced at 1400° and 1550°C were richer in Al2O3 than the compositions of stable mullite solid solutions predicted from the phase diagram of the SiO2-Al2O3 system. Particle size decreased with increasing Al2O3 content. The sintered densities depended upon the amount of SiO2-rich glassy phase formed during sintering and the green density expressed as a function of particle size.  相似文献   
73.
β-Ga2O3 nanocolumns straightened and crossed perpendicularly each other were deposited on MgO (1 0 0) substrate by vapor phase transport method. Growth of the nanocolumns was examined at steps of 1000, 1050, and 1200 °C in elevation of source-boat temperature. We have drawn out the substrate from deposition-tube at each source-boat temperatures of 1000, 1050, and 1200 °C. Scanning electron microscopy of the sample with source-boat temperature of 1200 °C demonstrated that the straightened and elongated nanocolumns are crossing perpendicularly each other. Typical lengths of the nanocolumns were in the range of several hundreds nanometers below 1050 °C, and those of 1200 °C were in the range of ten to fifteen hundreds nanometers. Diameters of the nanocolumns stayed in the range of few hundreds nanometers, notwithstanding variation of the source temperature. X-ray diffraction and transmission electron microscopy with energy dispersive X-ray spectroscopy revealed that the nanocolumns are monoclinic β-Ga2O3 crystal, and the (4 0 0) plane of β-Ga2O3 nanocolumns is parallel to the (1 0 0) plane of MgO substrate.  相似文献   
74.
Kinetic studies were performed on the reactions of phenylboronic acid with L-lactic acid and mandelic acid in acidic aqueous and alkaline solutions in order to specify reactive species in these reactions. It was confirmed that the diprotonated ligand (H2L: L-lactic acid or mandelic acid) is less reactive than the monoprotonated ligand (HL?: L-lactate ion or mandelate ion), which made possible direct determination of the rate constants of phenylboronic acid (PhB(OH)2) and its conjugate base, phenylboronate ion (PhB(OH)3?). It was found that PhB(OH)2 is more reactive than PhB(OH)3?. On the basis of kinetic results, it was concluded that the most reactive species are PhB(OH)2 and HL? at physiological pH 7.4, so the reaction in the boronic acid-based sensor for L-lactate mainly would occur between these species.  相似文献   
75.
Zirconium oxides (ZrO2−x) have been investigated as new cathodes for direct methanol fuel cells without platinum. ZrO2−x films were prepared using a radio frequency (RF) magnetron sputtering at RF powers from 75 to 175 W. The influence of the RF power on the catalytic activity for the oxygen reduction reaction (ORR) and properties of the ZrO2−x films were examined. The ORR activity of the ZrO2−x catalyst increased with the RF power in the range we studied. The onset potential for ORR over ZrO2−x deposited at 175 W was 0.88 V vs RHE. In addition, the relationship between the ORR activity and the composition, crystallinity, electric conductivity, as well as the ionization potential has been investigated. The zirconium oxide with an oxygen defected state and the higher electric conductivity showed the higher ORR activity, and the electrocatalytic activity for ORR increased with the decreasing in the ionization potential of the ZrO2−x catalyst.  相似文献   
76.
CARBON-BASED MATERIALS have been regardedas one of the most important materials in nano-technology.Not only nanotubes and fullerenes but alsoa new form of carbon incorporating distinct graphiticconfigurations in amorphous carbon networks hasrecently attracted extensive interests in order toaccomplish high performances by combining diversephysical properties which arise from carbon structuresfl,2].In particular,the establishment of functionallyhybridized carbon systems with a thin film f…  相似文献   
77.
The effects of the presence of Ga2O3 on low‐temperature sintering and the phase stability of 4, 5, and 6 mol% Sc2O3‐doped tetragonal zirconia ceramics (4ScSZ, 5ScSZ, and 6ScSZ, respectively) were investigated. A series of zirconia sintered bodies with compositions (ZrO2)0.99?x(Sc2O3)x(Ga2O3)0.01, x = 0.04, 0.05, and 0.06 was fabricated by sintering at 1000°C to 1500°C for 1 h using fine powders that were prepared via the combination of homogeneous precipitation method and hydrolysis technique using monoclinic zirconia sols synthesized through the forced hydrolysis of an aqueous solution of zirconium oxychloride at 100°C for 168 h. The presence of 1 mol% Ga2O3 was effective in reducing sintering temperature necessary to fabricate dense bodies and enabled to obtain dense sintered bodies via sintering at 1100°C for 1 h. The phase stability, that is, low‐temperature degradation behavior of the resultant zirconia ceramics was determined under hydrothermal condition. The zirconia ceramics codoped with 1 mol% Ga2O3 and 6 mol% Sc2O3 (1Ga6ScZ) fabricated via sintering at 1300°C for 1 h showed high phase stability without the appearance of monoclinic zirconia phase, that is the tetragonal‐to‐monoclinic phase transformation was not observed in the 1Ga6ScZ after treatment under hydrothermal condition at 150°C for 30 h.  相似文献   
78.
The effects of the volume and pH of the impregnation solution and of the calcination conditions were examined on the physicochemical and catalytic properties of a 13 wt% MoO3/Al2O3 extrudate catalyst. The Al2O3 support and drying procedures (static conditions without flowing air) were fixed in the preparations. In the present series of catalysts, the amount of crystalline MoO3 was marginally small. It was found that the dispersion of Mo oxide species increased as the volume of the impregnation solution increased, gradually approaching a maximum value. The increase in pH (2–8) of the impregnation solution was found to reduce the dispersion of Mo oxide species. The Mo dispersion increased slightly for the impregnation catalysts as the calcination temperature increased (673–873 K), whereas it decreased for the equilibrium adsorption catalysts. The effects of the calcination atmosphere (with or without flowing air, or with flowing humid air) were very small on the dispersion of Mo oxide species under the present preparation conditions. On the other hand, the methanol oxidation activity of MoO3/Al2O3 was sensitive to the preparation parameters examined here. It was demonstrated by means of EPMA and XPS that a considerable migration of Mo took place during the calcination.

In the present study on the preparation of a 13 wt% MoO3/Al2O3 catalyst, an impact index is proposed to measure the magnitude of the effects of the respective parameter(s) on the physicochemical and catalytic properties. With the Mo dispersion, the effects of the preparation parameter decreased in the order, surface area of the support >> drying process > volume of the impregnation solution > pH, calcination temperature and atmosphere. The size of the impact index for the dispersion of Mo sulfide species is 70–75% of that for the Mo oxide species. The HDS activity of the catalyst was less affected by the preparation parameters than the Mo sulfide dispersion. The preparation parameters affected the segregation of Mo on the outer surface of extrudates in a decreasing order: drying process > volume of the impregnation solution > pH, calcination conditions. It was found that the oxidation of methanol was affected most intensely by the drying procedures. The volume of the impregnation solution, calcination conditions and pH of the impregnation solution also strongly affected the oxidation activity. The impact index suggests that the sensitivity to the preparation variables of the physicochemical and catalytic properties of MoO3/Al2O3 decreases in the order, methanol oxidation activity > surface Mo segregation > Mo oxide dispersion > Mo sulfide dispersion > HDS activity.  相似文献   

79.
A new electrochemical heat pump using a combination of an electrolytic reaction at lower temperature to absorb low grade thermal energy and a thermochemical reaction at higher temperature to produce more efficient thermal energy is proposed. At a lower temperature, an endothermic reaction which cannot occur thermochemically proceeds with electrolysis. At a higher temperature, an exothermic reaction which is the reverse of the electrolysis reaction occurs thermochemically to produce high grade thermal energy. The water gas shift reaction, CO2(g) + H2(g) CO(g) + H2O(g), in molten carbonate is one possible candidate for the new electrochemical heat pump and can lead to an increase in the temperature of the thermal energy from 1100 to 1200K. A heat pump system using the shift reaction is also considered theoretically.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号