首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   1篇
化学工业   7篇
金属工艺   55篇
能源动力   2篇
轻工业   3篇
一般工业技术   54篇
冶金工业   8篇
自动化技术   8篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   7篇
  2015年   3篇
  2014年   7篇
  2013年   9篇
  2012年   19篇
  2011年   13篇
  2010年   10篇
  2009年   9篇
  2008年   2篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1991年   3篇
  1988年   1篇
  1985年   4篇
  1976年   1篇
排序方式: 共有137条查询结果,搜索用时 0 毫秒
11.
Solubilization of the armchair, metallic (10,10) single-walled carbon nanotubes (SWCNTs) in toluene is modeled using molecular dynamics simulations. Inter- and intra-molecular atomic interactions in the SWCNT + toluene system are represented using COMPASS (Condensed-phased Optimized Molecular Potential for Atomistic Simulation Studies), the first ab initio forcefield that enables an accurate and simultaneous prediction of various gas-phase and condensed-phase properties of organic and inorganic materials.The results obtained show that due to a significant drop in the configurational entropy of toluene, the solvation Gibbs free energy for these nanotubes in toluene is small but positive suggesting that a suspension of these nanotubes in toluene is not stable and that the nanotubes would fall out of the solution. This prediction is consistent with experimental observations.  相似文献   
12.
An Improved Mechanical Material Model for Ballistic Soda-Lime Glass   总被引:1,自引:0,他引:1  
In our recent work (Grujicic et al., Int. J. Impact Eng., 2008), various open-literature experimental findings pertaining to the ballistic behavior of soda-lime glass were used to construct a simple, physically based, high strain rate, high-pressure, large-strain mechanical model for this material. The model was structured in such a way that it is suitable for direct incorporation into standard commercial transient non-linear dynamics finite element-based software packages like ANSYS/Autodyn (Century Dynamics Inc., 2007) or ABAQUS/Explicit (Dessault Systems, 2007). To validate the material model, a set of finite element analyses of the edge-on-impact tests was conducted and the results compared with their experimental counterparts obtained in the recent work of Strassburger et al. (Proceedings of the 23rd International Symposium on Ballistics, Spain, April 2007; Proceedings of the 22nd International Symposium on Ballistics, November 2005, Vancouver, Canada). In general, a good agreement was found between the computational and the experimental results relative to: (a) the front shapes and the propagation velocities of the longitudinal and transverse waves generated in the target during impact and (b) the front shapes and propagation velocities of a coherent-damage zone (a zone surrounding the projectile/target contact surface which contains numerous micron and submicron-size cracks). However, substantial computational analysis/experiment disagreements were found relative to the formation of crack centers, i.e. relative to the presence and distribution of isolated millimeter-size cracks nucleated ahead of the advancing coherent-damage zone front. In the present work, it was shown that these disagreements can be substantially reduced if the glass model (Grujicic et al., Int. J. Impact Eng., 2008) is advanced to include a simple macrocracking algorithm based on the linear elastic fracture mechanics.  相似文献   
13.
Molecular statics and molecular dynamics are employed to study the effects of various microstructural and topological defects (e.g., chain ends, axial chain misalignment, inorganic solvent impurities, and sheet stacking faults) on the strength, ductility, and stiffness of p-phenylene terephthalamide (PPTA) fibers/filaments. These fibers can be considered as prototypes for advanced high strength/high-stiffness fibers like Kevlar®, Twaron®, New Star®, etc. While modeling these fibers, it was taken into account that they are essentially crystalline materials consisting of stacks of sheets, with each sheet containing an array of nearly parallel hydrogen-bonded molecules/chains. The inter-sheet bonding, on the other hand, was considered as mainly being of van der Waals or p-electron character. The effects of various deviations of the PPTA fiber structure from that of the perfectly crystalline structure (i.e., microstructural/topological defects) on the material’s mechanical properties are then considered. The results obtained show that while the presence of these defects decreases all the mechanical properties of PPTA fibers, specific properties display an increased level of sensitivity to the presence of certain defects. For example, longitudinal tensile properties are found to be most sensitive to the presence of chain ends, in-sheet transverse properties to the presence of chain misalignments, while cross-sheet transverse properties are found to be most affected by the presence of sheet stacking faults.  相似文献   
14.
Transformation toughening has been widely applied in metastable austenitic steels. Recently this toughening mechanism has been extended to ultrahigh strength secondary-hardening martensitic steels, bearing suitable austenitic dispersions. The resulting dispersed-phase transformation toughening depends on the stability of the austenitic dispersions. The stability of dispersed austenite depends on various factors including the chemical composition and size of austenite particles, the stress state and the yield strength of the matrix. A single-parameter characterization of the stability of the austenitic dispersion is provided by the Msσ temperature and a functional form relating that temperature with the above-mentioned factors is developed. The microstructural requirements for dispersed-phase transformation toughening are then derived in terms of the austenite particle size and chemical enrichment in stabilizing solutes. Compositional effects on austenite stability have been studied by performing thermodynamic calculations using the Thermo-Calc software. The free-energy change ΔGch = Gb.c.c.Gf.c.c. for martensitic transformation (a measure of austenite stability) has been evaluated as a function of composition in the ternary Fe---Ni---Co system. This information, when superimposed on isothermal sections at the tempering temperatures of interest, provides a way for selecting alloy compositions that maximize the thermodynamic stability of dispersed austenite.  相似文献   
15.
By comparison of the sectional area of the fetal head of the fronto-occipital level in the height of the biparietalic diameter and the cross sectional area of thorax in the level area of the ventrical it was tried to determine the exspected birth weight. A mean deviation of 8,9% was found. Below a birth weight of 2500 g the presented calculation is only valid to some extend as in these cases the dominance proved in fetal development grounds of the head of the fetus becomes apparent.  相似文献   
16.
Using a dislocation model of interfacial structure, kinetic theories of dislocation motion are adapted to predict the mobility of martensitic interfaces. Defining generalized driving forces and activation parameters, analytical models are developed which describe the kinetics of motion controlled by various types of obstacle interactions. The behaviors of martensitic interfaces and slip dislocations in identical microstructures are compared. For a lattice-invariant shear by slip, the martensitic interface behaves similarly to a collection of glide dislocations. The interface/obstacle interaction is much weaker if the martensite is internally twinned, giving a higher relative mobility.  相似文献   
17.
18.
The design of the currently used Advanced Combat Helmet (ACH) has been optimized to attain maximum protection against ballistic impacts (fragments, shrapnel, etc.) and hard-surface collisions. However, the ability of the ACH to protect soldiers against blast loading appears not to be as effective. Polyurea, a micro-segregated elastomeric copolymer has shown superior shock-mitigation capabilities. In the present work, a combined Eulerian/Lagrangian transient non-linear dynamics computational fluid/solid interaction analysis is used to investigate potential shock-mitigation benefits which may result from different polyurea-based design augmentations of the ACH. Specific augmentations include replacement of the currently used suspension-pad material with polyurea and the introduction of a thin polyurea internal lining/external coating to the ACH shell. Effectiveness of different ACH designs was quantified by: (a) establishing the main forms of mild traumatic brain injury (mTBI); (b) identifying the key mechanical causes for these injuries; and (c) quantifying the extents of reductions in the magnitude of these mechanical causes. The results obtained show that while the ACH with a 2-mm-thick polyurea internal lining displays the best blast mitigation performance, it does not provide sufficient protection against mTBI.  相似文献   
19.
Process Modeling of Ti-6Al-4V Linear Friction Welding (LFW)   总被引:1,自引:0,他引:1  
A fully coupled thermomechanical finite-element analysis of the linear friction welding (LFW) process is combined with the basic physical metallurgy of Ti-6Al-4V to predict microstructure and mechanical properties within the LFW joints (as a function of the LFW process parameters). A close examination of the experimental results reported in the open literature revealed that the weld region consists of a thermomechanically affected zone (TMAZ) and a heat-affected zone (HAZ) and that the material mechanical properties are somewhat more inferior in the HAZ. Taking this observation into account, a model for microstructure-evolution during LFW was developed and parameterized for the Ti-6Al-4V material residing in the HAZ. Specifically, this model addresses the problem of temporal evolution of the prior ??-phase grain size (the dominant microstructural parameter in the HAZ) during the LFW process. This model is next combined with the well-established property versus microstructure correlations in Ti-6Al-4V to predict the overall structural performance of the LFW joint. The results obtained are found to be in reasonably good agreement with their experimental counterparts suggesting that the present computational approach may be used to guide the selection of the LFW process parameters to optimize the structural performance of the LFW joints.  相似文献   
20.
A conventional gas metal arc welding (GMAW) butt-joining process has been modeled using a two-way fully coupled, transient, thermal-mechanical finite-element procedure. To achieve two-way thermal-mechanical coupling, the work of plastic deformation resulting from potentially high thermal stresses is allowed to be dissipated in the form of heat, and the mechanical material model of the workpiece and the weld is made temperature dependent. Heat losses from the deposited filler-metal are accounted for by considering conduction to the adjoining workpieces as well as natural convection and radiation to the surroundings. The newly constructed GMAW process model is then applied, in conjunction with the basic material physical-metallurgy, to a prototypical high-hardness armor martensitic steel (MIL A46100). The main outcome of this procedure is the prediction of the spatial distribution of various crystalline phases within the weld and the heat-affected zone regions, as a function of the GMAW process parameters. The newly developed GMAW process model is validated by comparing its predictions with available open-literature experimental and computational data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号