首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1589篇
  免费   62篇
电工技术   4篇
综合类   1篇
化学工业   290篇
金属工艺   11篇
机械仪表   25篇
建筑科学   69篇
矿业工程   2篇
能源动力   28篇
轻工业   204篇
水利工程   12篇
石油天然气   3篇
无线电   65篇
一般工业技术   341篇
冶金工业   458篇
原子能技术   5篇
自动化技术   133篇
  2024年   1篇
  2023年   18篇
  2022年   33篇
  2021年   54篇
  2020年   36篇
  2019年   31篇
  2018年   37篇
  2017年   35篇
  2016年   35篇
  2015年   31篇
  2014年   44篇
  2013年   89篇
  2012年   93篇
  2011年   123篇
  2010年   84篇
  2009年   79篇
  2008年   101篇
  2007年   91篇
  2006年   90篇
  2005年   80篇
  2004年   72篇
  2003年   60篇
  2002年   62篇
  2001年   37篇
  2000年   35篇
  1999年   18篇
  1998年   23篇
  1997年   19篇
  1996年   27篇
  1995年   22篇
  1994年   17篇
  1993年   11篇
  1992年   7篇
  1991年   4篇
  1990年   13篇
  1989年   8篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1978年   3篇
  1975年   1篇
排序方式: 共有1651条查询结果,搜索用时 390 毫秒
61.
Scope: Cancer cachexia is characterized by muscle and adipose tissue wasting caused partly by chronic, systemic inflammation. Conjugated linoleic acids (CLAs) are a group of fatty acids with various properties including anti‐inflammatory cis9, trans11 (c9t11)‐CLA and lipid‐mobilizing trans10, cis12 (t10c12)‐CLA. The purpose of this study was to test whether dietary supplementation of a c9t11‐CLA‐rich oil (6:1 c9t11:t10c12) could attenuate wasting of muscle and adipose tissue in colon‐26 adenocarcinoma‐induced cachexia in mice. Methods and results: Loss of body weight, muscle and adipose tissue mass caused by tumors were not rescued by supplementation with the c9t11‐CLA‐rich oil. In quadriceps muscle, c9t11‐CLA‐rich oil exacerbated tumor‐induced gene expression of inflammatory markers tumor necrosis factor‐α, IL‐6 receptor and the E3 ligase MuRF‐1 involved in muscle proteolysis. In epididymal adipose tissue, tumor‐driven delipidation and atrophy was aggravated by the c9,t11‐CLA‐rich oil, demonstrated by further reduced adipocyte size and lower adiponectin expression. However, expression of inflammatory cytokines and macrophage markers were not altered by tumors, or CLA supplementation. Conclusion: These data suggest that addition of c9t11‐CLA‐rich oil (0.6% c9t11, 0.1% t10c12) in diet did not ameliorate wasting in mice with cancer cachexia. Instead, it increased expression of inflammatory markers in the muscle and increased adipose delipidation.  相似文献   
62.
There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the higher reactivity of nano-Fe0 may impart advantages for groundwater remediation or other environmental applications. However, most of these reports are preliminary in that they leave a hostof potentiallysignificant(and often challenging) material or process variables either uncontrolled or unresolved. In an effort to better understand the reactivity of nano-Fe0, we have used a variety of complementary techniques to characterize two widely studied nano-Fe0 preparations: one synthesized by reduction of goethite with heat and H2 (Fe(H2)) and the other by reductive precipitation with borohydride (Fe(BH)). Fe(H2) is a two-phase material consisting of 40 nm alpha-Fe0 (made up of crystals approximately the size of the particles) and Fe3O4 particles of similar size or larger containing reduced sulfur; whereas Fe(BH) is mostly 20-80 nm metallic Fe particles (aggregates of <1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The FeBH particles further aggregate into chains. Both materials exhibit corrosion potentials that are more negative than nano-sized Fe2O3, Fe3O4, micro-sized Fe0, or a solid Fe0 disk, which is consistent with their rapid reduction of oxygen, benzoquinone, and carbon tetrachloride. Benzoquinone-which presumably probes inner-sphere surface reactions-reacts more rapidly with FeBH than Fe(H2), whereas carbon tetrachloride reacts at similar rates with FeBH and Fe(H2), presumably by outer-sphere electron transfer. Both types of nano-Fe0 react more rapidlythan micro-sized Fe0 based on mass-normalized rate constants, but surface area-normalized rate constants do not show a significant nano-size effect. The distribution of products from reduction of carbon tetrachloride is more favorable with Fe(H2), which produces less chloroform than reaction with Fe(BH).  相似文献   
63.
The n-6/n-3 fatty acid (FA) ratio has increased in the Western-style diet to ~10–15:1 during the last century, which may have contributed to the rise in cardiovascular disease (CVD). Prior studies have evaluated the effects on CVD risk factors of manipulating the levels of n-6 and n-3 FA using food and supplements or investigated the metabolic fate of linoleic acid (LNA) and α-linolenic acid (ALA) by varying the n-6/n-3 ratios. However, no previous studies have investigated the potential interaction between diet ratios and supplementation with eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). We used a factorial design approach with adults (n = 24) in a controlled feeding trial to compare the accretion of EPA and DHA into red blood cell membranes (RBC) by adding a direct source (algal oil supplement) of EPA and DHA in a diet with a 10:1 versus 2:1 ratio of n-6/n-3 FA. Subjects were randomized into 8-week crossover diet sequences and each subject consumed three of four diets [10:1, 10:1 plus supplement (10:1 + S), 2:1 and 2:1 + S]. LNA and ALA intakes were 9.4 and 7.7%, and 1.0 and 3.0% during the low and high ALA diets, respectively. Compared to the Western-style 10:1 diet, the 2:1 diet increased EPA by 60% (P < 0.0001) in RBC membranes without the direct EPA source and a 34% increase (P = 0.027) was observed with the 10:1 + S diet; however, DHA levels increased in both diet ratios only with a direct DHA source. Shifting towards a 2:1 diet is a valid alternative to taking EPA-containing supplements.  相似文献   
64.
65.
The term “conjugated linoleic acid” (CLA) refers to a group of positional and geometric isomers that are derived from linoleic acid and are found primarily in meat and milk products from ruminant animals. Due to the array of putative benefits associated with various forms of CLA, there has been recent interest in supplementing human diets with these fatty acids especially when weight loss is desired. However, in many animal models, CLA has been shown to decrease milk fat production. There is some concern, therefore, that maternal CLA supplementation during lactation might inadvertently decrease nutrient supply to the nursing infant. However, there is only limited research on the effect of CLA consumption on milk fat content in women. Based on previously published work from our laboratory, we hypothesized that CLA supplementation would reduce the milk fat percentage in lactating women in a dose-dependent manner. Breastfeeding women (n = 12) were assigned randomly to treatments of 4 g/day safflower oil (SFO), 2 g/day CLA plus 2 g/day SFO, or 4 g/day CLA in a double blind, 3 × 3 Latin square design. Conjugated linoleic acid supplements contained approximately equal amounts of cis9,trans11–18:2 and trans10,cis12–18:2; the two most common isoforms of CLA. Milk was collected by complete breast expression on the last day (day 5) of each intervention period and analyzed for macronutrient and fatty acid composition. On day 4 of each intervention period, infant milk consumption was estimated by 24 h weighing of the infant. Washout periods were 9 days in length. We observed a dose-dependent increase in the concentrations of cis9,trans11–18:2 and trans10,cis12–18:2 in the milk fat. However, we detected neither a change in overall macronutrient composition nor infant milk consumption. These data do not support those obtained from animal models or our previous human work suggesting that consumption of CLA mixtures necessarily reduces milk fat. It is possible that either (1) the interpretation of our previously published data should be reevaluated, and/or (2) there are important intra- and inter-species differences in this regard.  相似文献   
66.
Substantial research suggests that the t10,c12–18:2, but not the c9,t11–18:2, isomer of conjugated linoleic acid (CLA) reduces milk fat synthesis in lactating bovine and rodent species. Because fat is the major energy-yielding component in human milk, we were interested in whether this is true for women as well. Thus, the effects of c9,t11–18:2 and t10,c12–18:2 on milk fat were examined in breast-feeding women (n = 12) in a double-blind, placebo-controlled, crossover study with latin-square design. The study was divided into six periods: baseline (3 days), three intervention periods (5 days each), and two washout periods (9 days each). During each intervention period, women consumed 750 mg/day of a supplement containing predominantly c9,t11–18:2, t10,c12–18:2, or 18:1 (olive oil placebo). Milk was collected by complete breast expression on the final day of each period. Infant milk consumption was estimated by 24 h weighing on the penultimate day of each intervention and washout period, and maternal adiposity (% body fat) was determined at baseline using dual energy X-ray absorptiometry. Milk c9,t11–18:2 and t10,c12–18:2 concentrations were greater (P < 0.05) during the corresponding CLA treatment periods as compared to the placebo period, providing strong evidence of subject compliance. Both CLA isomers were transferred into milk fat at relatively high efficiency; average transfer efficiency was estimated to be 23.3%. Compared to the placebo treatment, milk fat content was not reduced during either CLA treatment. Data indicate that body fatness did not modify any putative effect of isomeric CLA consumption on milk fat concentration. The evidence from this study suggests that the sensitivity of lactating women’s mammary tissue to an anti-lipogenic effect of the t10,c12–18:2 isoform of CLA may be less than previously hypothesized.  相似文献   
67.
68.
The effect of linear styrene–butadiene polymer structure on the temperature–viscosity behavior of model polymer-base oil solutions is investigated using molecular dynamics simulations. Simulations of alternating, random, and block styrene–butadiene polymers in a dodecane solvent are used to calculate viscosity at 40 and 100 °C, reference temperatures for characterizing their function as viscosity modifiers. Mechanisms underlying this function are explored by quantifying the radius of gyration and intramolecular interactions of the polymers at the same reference temperatures. The block styrene–butadiene configuration exhibits the least change in viscosity with temperature, characteristic of a good viscosity modifier or viscosity index improver, and the behavior is correlated to the ability of this structure to form smaller coils with more intramolecular interactions at lower temperatures and then expand as temperature is increased. The results indicate that there is a correlation between styrene–butadiene polymer structure, additive function, and the mechanisms underlying that function.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号