首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   2篇
电工技术   1篇
化学工业   5篇
机械仪表   1篇
建筑科学   3篇
矿业工程   1篇
能源动力   16篇
轻工业   2篇
水利工程   1篇
石油天然气   1篇
无线电   54篇
一般工业技术   23篇
冶金工业   566篇
自动化技术   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   8篇
  2006年   12篇
  2005年   5篇
  2004年   6篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   17篇
  1998年   172篇
  1997年   93篇
  1996年   63篇
  1995年   41篇
  1994年   25篇
  1993年   36篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   14篇
  1987年   10篇
  1986年   16篇
  1985年   8篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   8篇
  1979年   2篇
  1978年   3篇
  1977年   30篇
  1976年   49篇
  1975年   4篇
排序方式: 共有676条查询结果,搜索用时 12 毫秒
91.
92.
Human neutrophil PLD activity stimulated with GTP-gamma-S was reconstituted with recombinant ARF1 in cytosol-depleted cells. PMA-pretreatment of intact cells greatly enhanced the subsequent reconstitution of the ARF1-regulated PLD activity. This enhancement was only observed provided that the intact cells were pretreated with PMA, suggesting the stable recruitment of a cytosolic component, presumably protein kinase C, to the membranes. rARF1-reconstituted PLD activity was not dependent on MgATP, but could be considerably enhanced by MgATP. Maximal effects of MgATP were seen at 1 mM. This enhancement by MgATP could not be attributed to protein kinase C. Neomycin was found to inhibit ARF1-regulated PLD activity suggesting the requirement for polyphosphoinositides. We conclude: (i) that many of the observed effects of PMA may be dependent on the presence of the small GTP-binding protein, ARF, and (ii) polyphosphoinositides are required for ARF1-stimulated PLD activity.  相似文献   
93.
The catalytic mechanism of D-glyceraldehyde-3-phosphate dehydrogenase is considered in the light of the available structural information. The design features of the enzyme molecule determining the pathway of the acyl transfer, i.e., the transfer of the acyl group produced in the oxidative step of the reaction to one of the two acceptors, inorganic phosphate or water, are discussed. The properties of enzyme forms possessing cysteine residues oxidized to sulfenic acid derivatives are described. The participation of these residues in the acyl transfer to water is considered.  相似文献   
94.
Esophageal adenocarcinoma (SKGT-2, SKGT-4, and SKGT-5) and epidermoid carcinoma (HCE-4) cells containing variable retinoblastoma (Rb), cyclin D1, p16, and p53 expression patterns were exposed to the synthetic flavone, flavopiridol. The IC50 was approximately 100-150 nM for each of these cell lines. Exposure of esophageal carcinoma cells to 300 nM flavopiridol induced cell cycle arrest and apoptosis, resulting in a 90% inhibition of proliferation relative to that of nontreated cells after a 5-day exposure to the drug. Western blot analysis revealed diminution of cyclin D1, Rb, and p107 protein levels after flavopiridol exposure. Whereas cell cycle arrest and overall growth inhibition did not correlate in any obvious manner with the genotype of these cell lines, apoptosis seemed to be more pronounced in SKGT-2 and SKGT-4 cells that lack Rb expression. Pretreatment of esophageal cancer cells with 9-cis-retinoic acid did not substantially potentiate flavopiridol activity in these cell lines. Although the precise mechanism of flavopiridol-mediated cytotoxicity has not been fully defined, this drug is an attractive agent for molecular intervention in esophageal cancers and their precursor lesions; further evaluation of flavopiridol in this clinical context is warranted.  相似文献   
95.
A human tumor necrosis factor-alpha (TNF-alpha) mutant (M3S) with low systemic toxicity in vivo was designed, and its structures in two different crystal packings were determined crystallographically at 1.8 and 2.15-A resolution, respectively, to explain altered biological activities of the mutant. M3S contains four changes: a hydrophilic substitution of L29S, two hydrophobic substitutions of S52I and Y56F, and a deletion of the N-terminal seven amino acids that is disordered in the structure of wild-type TNF-alpha. Compared with wild-type TNF-alpha, it exhibits 11- and 71-fold lower binding affinities for the human TNF-R55 and TNF-R75 receptors, respectively, and in vitro cytotoxic effect and in vivo systemic toxicity of M3S are 20 and 10 times lower, respectively. However, in a transplanted solid tumor mouse model, M3S suppresses tumor growth more efficiently than wild-type TNF-alpha. M3S is highly resistant to proteolysis by trypsin, and it exhibits increased thermal stability and a prolonged half-life in vivo. The L29S mutation causes substantial restructuring of the loop containing residues 29-36 into a rigid segment as a consequence of induced formation of intra- and intersubunit interactions, explaining the altered receptor binding affinity and thermal stability. A mass spectrometric analysis identified major proteolytic cleavage sites located on this loop, and thus the increased resistance of M3S to the proteolysis is consistent with the increased rigidity of the loop. The S52I and Y56F mutations do not induce a noticeable conformational change. The side chain of Phe56 projects into a hydrophobic cavity, while Ile52 is exposed to the bulk solvent. Ile52 should be involved in hydrophobic interactions with the receptors, since a mutant containing the same mutations as in M3S except for the L29S mutation exhibits an increased receptor binding affinity. The low systemic toxicity of M3S appears to be the effect of the reduced and selective binding affinities for the TNF receptors, and the superior tumor-suppression of M3S appears to be the effect of its weak but longer antitumoral activity in vivo compared with wild-type TNF-alpha. It is also expected that the 1.8-A resolution structure will serve as an accurate model for explaining the structure-function relationship of wild-type TNF-alpha and many TNF-alpha mutants reported previously and for the design of new TNF-alpha mutants.  相似文献   
96.
97.
98.
99.
We have shown previously that normal B cells share, with Epstein-Barr virus-transformed and malignant B cells, the ability to activate the alternative pathway (AP) of complement in vitro, resulting in the deposition of C3 fragments on the cell surface. Complement receptor type 2 (CR2, CD21) has been implicated directly as the site for formation of an AP convertase, which provides nascent C3b for deposition at secondary sites on the B-cell surface. In the present study, we have examined C3 fragment deposition in vitro in more detail by (1) assessing the importance of locally generated C3b for the deposition process, (2) investigating whether CR2 is the sole requirement for conferring AP activation capacity on a cell, and (3) determining whether CR2's function, as an AP activator, has different structural requirements from ligand binding. Increasing the availability of native C3, by increasing the serum (NHS) concentration, resulted in enhanced C3 fragment deposition on the B cells, whereas use of factor 1-depleted NHS, which showed massive fluid phase C3 conversion during the incubation, diminished the deposition. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting of untreated and hydroxylamine-treated lysates from B cells, after in vitro activation, revealed that the majority of C3 fragments (primarily iC3b and C3dg) had been covalently bound to the cell surface. Transfection of COS cells with wild-type CR2 or a deletion mutant lacking 11 of the molecule's 15 homologous domains, but retaining the ligand-binding site, revealed that expression of intact CR2 conferred a 12-fold increase in AP-activating capacity on these cells, while no increase in AP activity was apparent on cells transfected with the mutant CR2.  相似文献   
100.
After 10 years of clinical trials in patients with advanced cancer, monoclonal antibodies (mAbs) against cell surface antigens have not lived up to their initial promise. One such cell surface antigen is the ganglioside GD2. GD2 is richly expressed at the cell surfaces of human neuroblastomas, sarcomas, and melanomas. We have described a murine lymphoma (EL4) that is syngeneic in C57BL/6 mice and expresses GD2, a mAb against GD2 (mAb 3F8), and we have prepared a conjugate vaccine (GD2-keyhole limpet hemocyanin plus immunological adjuvant QS-21) that consistently induces antibodies against GD2. We demonstrate here, for the first time in a syngeneic murine model, that passively administered and vaccine-induced antiganglioside antibodies prevent outgrowth of micrometastases, and we use this model to establish some of the parameters of this protection. The level of protection was proportional to antibody titer. Treatment regimens resulting in the highest titer antibodies induced the most protection, and protection was demonstrated even when immunization was initiated after tumor challenge. Treatment with 3F8 1, 2, or 4 days after i.v. tumor challenge was highly protective, but waiting until 7 or 10 days after challenge resulted in minimal protection. The results were similar whether number of liver metastases or survival was used as the end point. These results suggest that unmodified mAbs or antibody-inducing vaccines against GD2 (and possibly other cancer cell surface antigens) should be used exclusively in the adjuvant setting, where circulating tumor cells and micrometastases are the primary targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号