首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   972篇
  免费   2篇
电工技术   1篇
化学工业   13篇
金属工艺   3篇
机械仪表   1篇
建筑科学   1篇
能源动力   6篇
轻工业   6篇
无线电   5篇
一般工业技术   35篇
冶金工业   899篇
自动化技术   4篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2015年   3篇
  2014年   3篇
  2013年   8篇
  2012年   6篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   5篇
  2001年   3篇
  2000年   4篇
  1999年   18篇
  1998年   258篇
  1997年   166篇
  1996年   99篇
  1995年   65篇
  1994年   50篇
  1993年   54篇
  1992年   10篇
  1991年   7篇
  1990年   8篇
  1989年   6篇
  1988年   16篇
  1987年   9篇
  1986年   6篇
  1985年   2篇
  1983年   4篇
  1982年   7篇
  1981年   5篇
  1980年   10篇
  1978年   4篇
  1977年   34篇
  1976年   70篇
  1975年   1篇
  1955年   1篇
排序方式: 共有974条查询结果,搜索用时 0 毫秒
971.
972.
Pure BiFeO3 (BFO) and Al doped BFO samples were synthesized via citrate precursor method and sintered at 500 °C for two hours. Effect of Al doping on the structural, optical, electrical, dielectric and magnetic properties were investigated. X-ray diffraction (XRD) confirmed the distorted rhombohedral structure without any merging of peaks which indicates no structural transformation. Average crystallite size was found to be in the range 28–39 nm. Field emission scanning electron microscopy (FESEM) images illustrated the dense, agglomerated, spherically shaped with reduced grain size nanoparticles. Increased value of dielectric constant with low dielectric tangent loss was observed for the Al doped BFO samples. The value of dielectric constant was found to be 51 at 100 kHz for x = 0.1 sample. Temperature dependent dielectric constant showed a dielectric anomaly, indicating the antiferromagnetic transition. The remanent polarization and the corresponding coercive field for x = 0.1 was found to be 0.0625 µC/cm2 and 56.154 kV/cm at an operating voltage of 1000 V. The improved electrical properties with low leakage current density were ascribed to the stabilization of the pervoskite structure and reduced oxygen vacancies.  相似文献   
973.
Phenylglyoxylate (benzoylformate) is an intermediate in the anoxic metabolism of phenylalanine and phenylacetate. It is formed by alpha-oxidation of phenylacetyl-CoA. Phenylglyoxylate is oxidatively decarboxylated by phenylglyoxylate-oxidoreductase to benzoyl-CoA, a central intermediate of anaerobic aromatic metabolism. The phenylglyoxylate oxidizing enzyme activity in the denitrifying bacterium Azoarcus evansii was induced during anaerobic growth with phenylalanine, phenylacetate and phenylglyoxylate, but not with benzoate. The new enzyme phenylglyoxylate:acceptor oxidoreductase was purified and studied. The oxygen-sensitive enzyme reduced both NAD+ and viologen dyes. It was composed of five subunits of approximately 50, 48, 43, 24, and 11.5 kDa; the native mass as determined by gel filtration was 370 kDa, suggesting an alpha2 beta2 gamma2 delta2 epsilon2 composition. Phenylglyoxylate:acceptor oxidoreductase exhibited an ultraviolet/visible spectrum characteristic for an iron-sulfur protein and contained 35 +/- 4 mol Fe, 36 +/- 4 mol acid-labile sulfur, and 1.1 +/- 0.2 mol FAD/mol. The enzyme was specific for phenylglyoxylate (Km 45 microM) and coenzyme A (Km 55 microM); 2-oxoisovalerate was oxidized with 15% of the rate. The turnover number with benzyl viologen at 37 degrees C was 46 s(-1) at the optimal pH of 8. The enzyme catalyzed a NAD(P)H:viologen dye transhydrogenation reaction, NAD(H) being the preferred coenzyme. It also catalyzed an isotope exchange between CO2 and the carboxyl group of the substrate. The data are consistent with the following hypothesis. The enzyme complex consists of a core enzyme of four subunits with the composition alpha2 beta2 gamma2 delta2, as reported for archaeal 2-oxoacid:ferredoxin oxidoreductases; this complex is able to reduce viologen dyes. The holoenzyme contains in addition an epsilon2 unit that catalyzes the transfer of electrons from a small ferredoxin-like subunit of the core complex to NAD+; this unit also catalyzes the transhydrogenase reaction, carries FAD and resembles ferredoxin:NAD(P)+-oxidoreductase.  相似文献   
974.
The modernization of postharvest operations and penetration of emerging technologies in horticultural processing have provided intelligent solutions for reducing postharvest losses. Work environmental and occupational health issues require immediate attention as the awkward posture and continuous drudgery-prone on-farm sorting and grading activities may lead to musculoskeletal disorders. The main objective of this study was to develop an automatic farm-friendly machine for real-time citrus fruit washing, image-based sorting, and weight grading; designed optimally and equipped with an embedded system comprising a lightweight convolutional neural network (CNN) model. Also included in this study was a thorough ergonomic assessment of the developed machine in a real work environment. The parametric choice of the fruit washing and singulation system was performed by employing computational fluid dynamics modeling and response surface methodology designed optimization. It was observed that under steady-state conditions, the water jet would arrive at a velocity of 11.36 m/s which would eventually suit a singulation conveyor with a slope of 25°. A noninvasive grading and sorting approach for citrus fruits is presented in this paper that leverages deep learning to classify the fruits into “accept” and “reject” classes. The custom lightweight CNN model “SortNet” has shown excellent classification results with an overall accuracy of 97.6%. The ergonomic evaluation shows that the average body part discomfort score in case of operating an automatic fruit grading machine was much lower (12.3 ± 2.0) than the traditional method (30.9 ± 3.3). Further, in the case of machine operation, the percentage load on the muscles ranged from 28.67 to 34.31 reflecting that subjects can work for longer duration on the machine without fatigue as compared with the traditional manual operation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号