首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   708篇
  免费   65篇
  国内免费   6篇
电工技术   5篇
综合类   3篇
化学工业   150篇
金属工艺   9篇
机械仪表   23篇
建筑科学   12篇
矿业工程   1篇
能源动力   81篇
轻工业   104篇
水利工程   3篇
石油天然气   7篇
无线电   77篇
一般工业技术   176篇
冶金工业   33篇
原子能技术   5篇
自动化技术   90篇
  2024年   5篇
  2023年   24篇
  2022年   59篇
  2021年   88篇
  2020年   61篇
  2019年   62篇
  2018年   69篇
  2017年   36篇
  2016年   42篇
  2015年   23篇
  2014年   36篇
  2013年   44篇
  2012年   33篇
  2011年   34篇
  2010年   23篇
  2009年   18篇
  2008年   15篇
  2007年   11篇
  2006年   9篇
  2005年   6篇
  2004年   7篇
  2003年   7篇
  2002年   4篇
  2001年   6篇
  2000年   3篇
  1999年   6篇
  1998年   16篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1987年   3篇
  1986年   3篇
  1984年   2篇
  1982年   1篇
排序方式: 共有779条查询结果,搜索用时 31 毫秒
11.
讨论了以基于前缀封闭集合的Heyting代数的直觉解释的线性μ-演算(IμTL)作为描述“假设-保证”的逻辑基础的问题,提出了一个基于IμTL的“假设-保证”规则.该规则比往常应用线性时序逻辑(LTL)作为规范语言的那些规则具有更好的表达能力,扩展了对形如“always ?”等安全性质的“假设-保证”的范围,具备更一般的“假设-保证”推理能力及对循环推理的支持.  相似文献   
12.
A fundamental challenge in the design of Wireless Sensor Networks (WSNs) is to maximize their lifetimes especially when they have a limited and non-replenishable energy supply. To extend the network lifetime, power management and energy-efficient communication techniques at all layers become necessary. In this paper, we present solutions for the data gathering and routing problem with in-network aggregation in WSNs. Our objective is to maximize the network lifetime by utilizing data aggregation and in-network processing techniques. We particularly focus on the joint problem of optimal data routing with data aggregation en route such that the above mentioned objective is achieved. We present Grid-based Routing and Aggregator Selection Scheme (GRASS), a scheme for WSNs that can achieve low energy dissipation and low latency without sacrificing quality. GRASS embodies optimal (exact) as well as heuristic approaches to find the minimum number of aggregation points while routing data to the Base-Station (BS) such that the network lifetime is maximized. Our results show that, when compared to other schemes, GRASS improves system lifetime with acceptable levels of latency in data aggregation and without sacrificing data quality.  相似文献   
13.
Iron‐oxide nanoparticles (IONPs) have been widely favoured due to their biodegradable, low cytotoxic effects and having reactive surface which can be altered with biocompatible coatings. Considering various medical applications of IONPs, the authors were encouraged to study whether IONPs could be effective against fungal infections caused by Candida species. In this study, IONPs were characterised by scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The goal of this study was to evaluate the antifungal activity of IONPs against different Candida spp. compared with fluconazole (FLC). IONPs were spherical with the size of 30–40 nm. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of IONPs ranged from 62.5 to 500 µg/ml and 500 to 1000 μg/ml, respectively. The MIC and MFC of FLC were in range of 16–128 μg/ml and 64–512 μg/ml, respectively. The growth inhibition value indicated that Candida tropicalis, Candida albicans and Candida glabrata spp. were most susceptible to IONPs. The finding showed that the IONPs possessed antifungal potential against pathogenic Candida spp. and could inhibit the growth of all the tested Candida spp. Further studies, both in vitro and in vivo (including susceptibility, toxicity, Probability of kill (PK) and efficacy studies) are needed to determine whether IONPs are suitable for medicinal purposes.Inspec keywords: iron compounds, nanoparticles, nanomedicine, biomedical materials, microorganisms, cellular biophysics, toxicology, drugs, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectraOther keywords: antifungal effect, iron‐oxide nanoparticles, Candida species, biodegradable effects, cytotoxic effects, reactive surface, biocompatible coatings, medical applications, IONP, fungal infections, Candidiasis, immunocompromised hosts, antifungal drugs, resistant organisms, antifungal properties, side effects, chemical drugs, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, antifungal activity, disc diffusion, broth microdilution, minimal inhibitory concentration, minimum fungicidal concentration, Candida tropicalis, Candida Albicans, Candida glabrata, antifungal potential, Fe3 O4   相似文献   
14.
Infectious diseases are caused by etiological agents. Nanotechnology has been used to minimise the effect of clinical pathogens which have resistance to antibiotics. In current research synthesis, characterisation and biological activities of green synthesised nanoparticles using Artemisia vulgaris extract have been done. The characterisation of AgNPs was carried out using Fourier transform infrared spectroscopy, UV‐Vis spectrophotometry, and scanning electron microscopy. Anti‐biofilm, cell viability, antibacterial, brine shrimp lethality, and deoxyribonucleic acid protection effects have been screened. UV‐Vis spectra showed the absorption peak of synthesised nanoparticles at 400 nm. FT‐IR indicated the involvement of the functional group in the preparation of AgNPs. SEM showed the spherical shape of AgNPs with 30 nm diameter. Biological screening results revealed the antibacterial effect against clinical bacterial pathogens. Biofilm reduction and cell viability assay also supported the antibacterial effect. Cytotoxicity effect was recorded as 100% at 200 μg/ml through brine shrimp lethality assay. Protein kinase inhibition zones recorded for AgNPs (16 mm bald) compared with A. vulgaris extract (11 mm bald). It has been concluded that green synthesised AgNPs are more effective against infectious pathogens and could be used as a potential source for therapeutic drugs.Inspec keywords: cellular biophysics, toxicology, silver, nanoparticles, nanomedicine, diseases, microorganisms, ultraviolet spectra, visible spectra, Fourier transform infrared spectra, enzymes, molecular biophysicsOther keywords: biofilm reduction, cell proliferation, anthelmintic effect, cytotoxicity effect, green synthesised silver nanoparticle, Artemisia vulgaris extract, infectious diseases, aetiological agents, Fourier transform infrared spectroscopy, UV‐Vis spectrophotometry, scanning electron microscopy, SEM, antibiofilm, cell viability, brine shrimp lethality, deoxyribonucleic acid protection effects, AgNP, cytotoxicity, protein kinase inhibition zones, therapeutic drugs  相似文献   
15.
Vehicle-to-grid technology is an emerging field that allows unused power from Electric Vehicles (EVs) to be used by the smart grid through the central aggregator. Since the central aggregator is connected to the smart grid through a wireless network, it is prone to cyber-attacks that can be detected and mitigated using an intrusion detection system. However, existing intrusion detection systems cannot be used in the vehicle-to-grid network because of the special requirements and characteristics of the vehicle-to-grid network. In this paper, the effect of denial-of-service attacks of malicious electric vehicles on the central aggregator of the vehicle-to-grid network is investigated and an intrusion detection system for the vehicle-to-grid network is proposed. The proposed system, central aggregator–intrusion detection system (CA-IDS), works as a security gateway for EVs to analyze and monitor incoming traffic for possible DoS attacks. EVs are registered with a Central Aggregator (CAG) to exchange authenticated messages, and malicious EVs are added to a blacklist for violating a set of predefined policies to limit their interaction with the CAG. A denial of service (DoS) attack is simulated at CAG in a vehicle-to-grid (V2G) network manipulating various network parameters such as transmission overhead, receiving capacity of destination, average packet size, and channel availability. The proposed system is compared with existing intrusion detection systems using different parameters such as throughput, jitter, and accuracy. The analysis shows that the proposed system has a higher throughput, lower jitter, and higher accuracy as compared to the existing schemes.  相似文献   
16.
The catalyst has a significant role in gas processing applications such as reforming technologies for H2 and syngas production. The stable catalyst is requisite for any industrial catalysis application to make it commercially viable. Several methods are employed to synthesize the catalysts. However, there is still a challenge to achieve a controlled morphology and pure catalyst which majorly influences the catalytic activity in reforming applications. The conventional methods are expansive, and the removal of the impurities are major challenges. Nevertheless, it is not straightforward to achieve the desired structure and stability. Therefore, significant interest has been developed on the advanced techniques to take control of the physicochemical properties of the catalyst through non-thermal plasma (NTP) techniques. In this review, the systematic evolution of the catalyst synthesis using NTP technique is elucidated. The emerging DBD plasma to synthesized and effective surface treatment is reviewed. DBD plasma synthesized catalyst performance in reforming application for H2 and syngas production is summarised. Furthermore, the status of DBD plasma for catalyst synthesis and proposed future avenues to design environmentally suitable and cost-effective synthesis techniques are discussed.  相似文献   
17.
18.
Chitosan and polyethylene glycol (PEG-600) membranes were synthesized and crosslinked with 3-aminopropyltriethoxysilane (APTES). The main purpose of this research work is to synthesize RO membranes which can be used to provide desalinated water for drinking, industrial and agricultural purposes. Hydrogen bonding between chitosan and PEG was confirmed by displacement of the hydroxyl absorption peak at 3237 cm−1 in pure chitosan to lower values in crosslinked membranes by using FTIR. Dynamic mechanical analysis revealed that PEG lowers Tg of the modified membranes vs. pure chitosan from 128.5 °C in control to 120 °C in CS-PEG5. SEM results highlighted porous and anisotropic structure of crosslinked membranes. As the amount of PEG was increased, hydrophilicity of membranes was increased and water absorption increased up to a maximum of 67.34%. Permeation data showed that flux and salt rejection value of the modified membranes was increased up to a maximum of 80% and 40.4%, respectively. Modified films have antibacterial properties against Escherichia coli as compared to control membranes.  相似文献   
19.
In this article, a ternary WO3/g‐C3N4@ BiVO4 composites were prepared using eco‐friendly hydrothermal method to produce efficient hydrogen energy through water in the presence of sacrificial agents. The prepared samples were characterized by scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), ultraviolet‐visible (UV‐vis), Brunauer‐Emmett‐Teller (BET) surface area, and photoluminescence spectroscopy (PL) emission spectroscopy. The experimental study envisages the formation of 2‐D nanostructures and observed that such kinds of nanostructures could provide more active sites for photocatalytic reduction of water and their inherent reactive‐species mechanism. The results showed the excellent photocatalytic performance (432 μmol h?1 g?1) for 1.5% BiVO4 nanoparticles in WO3/g‐C3N4 composite when compared with pure WO3 and BiVO4. The optical properties and photocatalytic activity measurement confirmed that BiVO4 nanoparticles in WO3/g‐C3N4 photocatalyst inhibited the recombination of photogenerated electron and holes and enhanced the reduction reactions for H2 production. The enhanced photocatalytic efficiency of the composite nanostructures may be attributed to wide absorption region of visible light, large surface area, and efficient separation of electrons/holes pairs owing to synergistic effects between BiVO4 and WO3/g‐C3N4. The prepared samples would be a precise optimal photocatalyst to increase their suppliers for worldwide applications especially in energy harvesting.  相似文献   
20.
Abstract

Although it is well known that light carries momentum and exerts a pressure on objects, a conservation of momentum principle is apparently rarely used in optics. In nonlinear optics light waves interact and may exchange both energy and momentum. We demonstrate that a conservation of momentum principle holds in these cases and in fact its use is widespread but generally unrecognized in the standard mathematical methods. In both the cases of linear basis waves interacting nonlinearly, e.g. coupled-wave theory and frequency mixing, and fully nonlinear waves, we demonstrate that a governing Hamiltonian is related to momentum. Action principles are used to discuss the generality of these results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号