首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1252篇
  免费   84篇
  国内免费   1篇
电工技术   12篇
化学工业   656篇
金属工艺   23篇
机械仪表   15篇
建筑科学   17篇
能源动力   25篇
轻工业   167篇
水利工程   3篇
石油天然气   9篇
无线电   37篇
一般工业技术   222篇
冶金工业   25篇
原子能技术   5篇
自动化技术   121篇
  2024年   12篇
  2023年   38篇
  2022年   199篇
  2021年   184篇
  2020年   55篇
  2019年   35篇
  2018年   46篇
  2017年   50篇
  2016年   60篇
  2015年   48篇
  2014年   82篇
  2013年   61篇
  2012年   73篇
  2011年   73篇
  2010年   39篇
  2009年   43篇
  2008年   57篇
  2007年   37篇
  2006年   33篇
  2005年   29篇
  2004年   20篇
  2003年   12篇
  2002年   13篇
  2001年   7篇
  2000年   7篇
  1999年   1篇
  1998年   7篇
  1997年   8篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1982年   1篇
  1980年   1篇
  1964年   1篇
  1959年   1篇
排序方式: 共有1337条查询结果,搜索用时 15 毫秒
991.
Pathophysiology of chronic neurodegeneration is mainly based on complex mechanisms related to aberrant signal transduction, excitation/inhibition imbalance, excitotoxicity, synaptic dysfunction, oxidative stress, proteotoxicity and protein misfolding, local insulin resistance and metabolic dysfunction, excessive cell death, development of glia-supported neuroinflammation, and failure of neurogenesis. These mechanisms tightly associate with dramatic alterations in the structure and activity of the neurovascular unit (NVU) and the blood–brain barrier (BBB). NVU is an ensemble of brain cells (brain microvessel endothelial cells (BMECs), astrocytes, pericytes, neurons, and microglia) serving for the adjustment of cell-to-cell interactions, metabolic coupling, local microcirculation, and neuronal excitability to the actual needs of the brain. The part of the NVU known as a BBB controls selective access of endogenous and exogenous molecules to the brain tissue and efflux of metabolites to the blood, thereby providing maintenance of brain chemical homeostasis critical for efficient signal transduction and brain plasticity. In Alzheimer’s disease, mitochondria are the target organelles for amyloid-induced neurodegeneration and alterations in NVU metabolic coupling or BBB breakdown. In this review we discuss understandings on mitochondria-driven NVU and BBB dysfunction, and how it might be studied in current and prospective NVU/BBB in vitro models for finding new approaches for the efficient pharmacotherapy of Alzheimer’s disease.  相似文献   
992.
Quantum dots (QDs) have a broad range of applications in cell biolabeling, cancer treatment, metastasis imaging, and therapeutic drug monitoring. Despite their wide use, relatively little is known about their influence on other molecules. Interactions between QDs and proteins can influence the properties of both nanoparticles and proteins. The effect of mercaptosuccinic acid-capped CdTe QDs on intercellular copper–zinc superoxide dismutase (SOD1)—one of the main enzymatic antioxidants—was investigated. Incubation of SOD1 with QDs caused an increase in SOD1 activity, unlike in the case of CdCl2, which inhibited SOD1. Moreover, this effect on SOD1 increased with the size and potential of QDs, although the effect became clearly visible in higher concentrations of QDs. The intensity of QD-SOD1 fluorescence, analyzed with the use of capillary electrophoresis with laser-induced fluorescence detection, was dependent on SOD1 concentration. In the case of green QDs, the fluorescence signal decreased with increasing SOD1 concentration. In contrast, the signal strength for Y-QD complexes was not dependent on SOD1 dilutions. The migration time of QDs and their complexes with SOD1 varied depending on the type of QD used. The migration time of G-QD complexes with SOD1 differed slightly. However, in the case of Y-QD complexes with SOD1, the differences in the migration time were not dependent on SOD concentration. This research shows that QDs interact with SOD1 and the influence of QDs on SOD activity is size-dependent. With this knowledge, one might be able to control the activation/inhibition of specific enzymes, such as SOD1.  相似文献   
993.
Malnutrition is a serious problem in post-stroke patients. Importantly, it intensifies with hospitalization, and is related to both somatic and psychological reasons, as well as is associated with the insufficient knowledge of people who accompany the patient. Malnutrition is a negative prognostic factor, leading to a reduction in the quality of life. Moreover, this condition significantly extends hospitalization time, increases the frequency of treatment in intensive care units, and negatively affects the effectiveness of rehabilitation. Obtaining growing data on the therapeutic effectiveness of new compounds of natural origin is possible through the use of pharmacodynamic and analytical methods to assess their therapeutic properties. The proper supply of nutrients, as well as compounds of natural origin, is an important element of post-stroke therapy, due to their strong antioxidant, anti-inflammatory, neuroprotective and neuroplasticity enhancing properties. Taking the above into account, in this review we present the current state of knowledge on the benefits of using selected substances of natural origin in patients after cerebral stroke.  相似文献   
994.
The efficiency of immunotherapy using monoclonal antibodies that inhibit immune checkpoints has been proven in many clinical studies and well documented by numerous registration approaches. To date, PD-L1 expression on tumor and immune cells, tumor mutation burden (TMB), and microsatellite instability (MSI) are the only validated predictive factors used for the qualification of cancer patients for immunotherapy. However, they are not the ideal predictive factors. No response to immunotherapy could be observed in patients with high PD-L1 expression, TMB, or MSI. On the other hand, the effectiveness of this treatment method also may occur in patients without PD-L1 expression or with low TMB and with microsatellite stability. When considering the best predictive factor, we should remember that the effectiveness of immunotherapy relies on an overly complex process depending on many factors. To specifically stimulate lymphocytes, not only should their activity in the tumor microenvironment be unlocked, but above all, they should recognize tumor antigens. The proper functioning of the anticancer immune system requires the proper interaction of many elements of the specific and non-specific responses. For these reasons, a multi-parameter analysis of the immune system at its different activity levels is considered a very future-oriented predictive marker. Such complex immunological analysis is performed using modern molecular biology techniques. Based on the gene expression studies, we can determine the content of individual immune cells within the tumor, its stroma, and beyond. This includes all cell types from active memory cytotoxic T cells, M1 macrophages, to exhausted T cells, regulatory T cells, and M2 macrophages. In this article, we summarize the possibilities of using an immune system analysis to predict immunotherapy efficacy in cancer patients. Moreover, we present the advantages and disadvantages of immunoprofiling as well as a proposed future direction for this new method of immune system analysis in cancer patients who receive immunotherapy.  相似文献   
995.
Nudt16 is a member of the NUDIX family of hydrolases that show specificity towards substrates consisting of a nucleoside diphosphate linked to another moiety X. Several substrates for hNudt16 and various possible biological functions have been reported. However, some of these reports contradict each other and studies comparing the substrate specificity of the hNudt16 protein are limited. Therefore, we quantitatively compared the affinity of hNudt16 towards a set of previously published substrates, as well as identified novel potential substrates. Here, we show that hNudt16 has the highest affinity towards IDP and GppG, with Kd below 100 nM. Other tested ligands exhibited a weaker affinity of several orders of magnitude. Among the investigated compounds, only IDP, GppG, m7GppG, AppA, dpCoA, and NADH were hydrolyzed by hNudt16 with a strong substrate preference for inosine or guanosine containing compounds. A new identified substrate for hNudt16, GppG, which binds the enzyme with an affinity comparable to that of IDP, suggests another potential regulatory role of this protein. Molecular docking of hNudt16-ligand binding inside the hNudt16 pocket revealed two binding modes for representative substrates. Nucleobase stabilization by Π stacking interactions with His24 has been associated with strong binding of hNudt16 substrates.  相似文献   
996.
We report a lymphoma patient with profound B-cell deficiency after chemotherapy combined with anti-CD20 antibody successfully treated with remdesivir and convalescent plasma for prolonged SARS-CoV-2 infection. Viral clearance was likely attributed to the robust expansion and activation of TCR Vβ2 CD8+ cytotoxic T cells and CD16 + CD56- NK cells. This is the first presentation of TCR-specific T cell oligoclonal response in COVID-19. Our study suggests that B-cell depleted patients may effectively respond to anti-SARS-CoV-2 treatment when NK and antigen-specific Tc cell response is induced.  相似文献   
997.
Multiple endocrine neoplasia type 1 (MEN1) is a rare tumor syndrome that manifests differently among various patients. Despite the mutations in the MEN1 gene that commonly predispose tumor development, there are no obvious phenotype–genotype correlations. The existing animal and in vitro models do not allow for studies of the molecular genetics of the disease in a human-specific context. We aimed to create a new human cell-based model, which would consider the variability in genetic or environmental factors that cause the complexity of MEN1 syndrome. Here, we generated patient-specific induced pluripotent stem cell lines carrying the mutation c.1252G>T, D418Y in the MEN1 gene. To reduce the genetically determined variability of the existing cellular models, we created an isogenic cell system by modifying the target allele through CRISPR/Cas9 editing with great specificity and efficiency. The high potential of these cell lines to differentiate into the endodermal lineage in defined conditions ensures the next steps in the development of more specialized cells that are commonly affected in MEN1 patients, such as parathyroid or pancreatic islet cells. We anticipate that this isogenic system will be broadly useful to comprehensively study MEN1 gene function across different contexts, including in vitro modeling of MEN1 syndrome.  相似文献   
998.
Introduction: Introducing new drugs for clinical application is a very difficult, long, drawn-out, and costly process, which is why drug repositioning is increasingly gaining in importance. The aim of this study was to analyze the cytotoxic properties of ciprofloxacin and levofloxacin on bladder and prostate cell lines in vitro. Methods: Bladder and prostate cancer cell lines together with their non-malignant counterparts were used in this study. In order to evaluate the cytotoxic effect of both drugs on tested cell lines, MTT assay, real-time cell growth analysis, apoptosis detection, cell cycle changes, molecular analysis, and 3D cultures were examined. Results: Both fluoroquinolones exhibited a toxic effect on all of the tested cell lines. In the case of non-malignant cell lines, the cytotoxic effect was weaker, which was especially pronounced in the bladder cell line. A comparison of both fluoroquinolones showed the advantage of ciprofloxacin (lower doses of drug caused a stronger cytotoxic effect). Both fluoroquinolones led to an increase in late apoptotic cells and an inhibition of cell cycle mainly in the S phase. Molecular analysis showed changes in BAX, BCL2, TP53, and CDKN1 expression in tested cell lines following incubation with ciprofloxacin and levofloxacin. The downregulation of topoisomerase II genes (TOP2A and TOP2B) was noticed. Three-dimensional (3D) cell culture analysis confirmed the higher cytotoxic effect of tested fluoroquinolone against cancer cell lines. Conclusions: Our results suggest that both ciprofloxacin and levofloxacin may have great potential, especially in the supportive therapy of bladder cancer treatment. Taking into account the low costs of such therapy, fluoroquinolones seem to be ideal candidates for repositioning into bladder cancer therapeutics.  相似文献   
999.
Red fluorescent genetically encoded calcium indicators (GECIs) have expanded the available pallet of colors used for the visualization of neuronal calcium activity in vivo. However, their calcium-binding domain is restricted by calmodulin from metazoans. In this study, we developed red GECI, called FRCaMP, using calmodulin (CaM) from Schizosaccharomyces pombe fungus as a calcium binding domain. Compared to the R-GECO1 indicator in vitro, the purified protein FRCaMP had similar spectral characteristics, brightness, and pH stability but a 1.3-fold lower ΔF/F calcium response and 2.6-fold tighter calcium affinity with Kd of 441 nM and 2.4–6.6-fold lower photostability. In the cytosol of cultured HeLa cells, FRCaMP visualized calcium transients with a ΔF/F dynamic range of 5.6, which was similar to that of R-GECO1. FRCaMP robustly visualized the spontaneous activity of neuronal cultures and had a similar ΔF/F dynamic range of 1.7 but 2.1-fold faster decay kinetics vs. NCaMP7. On electrically stimulated cultured neurons, FRCaMP demonstrated 1.8-fold faster decay kinetics and 1.7-fold lower ΔF/F values per one action potential of 0.23 compared to the NCaMP7 indicator. The fungus-originating CaM of the FRCaMP indicator version with a deleted M13-like peptide did not interact with the cytosolic environment of the HeLa cells in contrast to the metazoa-originating CaM of the similarly truncated version of the GCaMP6s indicator with a deleted M13-like peptide. Finally, we generated a split version of the FRCaMP indicator, which allowed the simultaneous detection of calcium transients and the heterodimerization of bJun/bFos interacting proteins in the nuclei of HeLa cells with a ΔF/F dynamic range of 9.4 and a contrast of 2.3–3.5, respectively.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号