Paralleling the extensive growth and expansion of interconnected electric power systems in the United States and Canada during the past 60 years, has been the related need to regulate generation in the constituent areas, and the power flow between them, to achieve equitable, reliable and economic system and area operation. Many individuals and groups have made contributions to these objectives. These contributions constitute the evolution of the system and area realtime control art from modest, tentative beginnings to the comprehensive, broadly scoped and highly capable present day on-line digital control systems. This paper presents one individual's view, based largely on personal experience and observation, of significant steps in this evolutionary process. The paper deals primarily with the analog phases of these developments, many of the philosophies and techniques of which remain basic to current digital executions. 相似文献
In this paper,,we report a novel simulation approach that computes both the transient and steady state electrothermal behavior in integrated circuit (IC) compatible thermally isolated microheaters. The resulting distribution of heat, current density and temperature, as well as the electrical terminal behavior have been obtained for realistic device structures. The results are based on a two-dimensional solution of the coupled system of partial differential equations that govern both electrical and heat transport in the device. Unlike standard numerical approaches for coupled systems, our technique is based on the behavioural models, available in most commercial circuit simulators (e.g., HSPICE), that allow synthesis of complex, nonlinear, and coupled circuit elements. The simulation results are in excellent agreement with measurement data of steady state and transient terminal characteristics, obtained under conditions of vacuum. We note that this modeling approach allows concurrent simulation (and subsequent optimization) of the performance of both the control electronics as well as the thermal element(s), within the same IC design environment 相似文献
A new generic code, patterned after and compatible with the NASPE/BPEG Generic Pacemaker Code (NBG Code) was adopted by the NASPE Board of Trustees on January 23, 1993. It was developed by the NASPE Mode Code Committee, including members of the North American Society of Pacing and Electrophysiology (NASPE) and the British Pacing and Electrophysiology Group (BPEG). It is abbreviated as the NBD (for NASPE/BPEG Defibrillator) Code. It is intended for describing the capabilities and operation of implanted cardioverter defibrillators (ICDs) in conversation, record keeping, and device labeling, and incorporates four positions designating: (1) shock location; (2) antitachycardia pacing location; (3) means of tachycardia detection; and (4) antibradycardia pacing location. An additional Short Form, intended only for use in conversation, was defined as a concise means of distinguishing devices capable of shock alone, shock plus antibradycardia pacing, and shock plus antitachycardia and antibradycardia pacing. 相似文献
Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design considerations but makes use of a non-natural, poly-N-substituted glycine or "peptoid" scaffold to circumvent the difficulties associated with SP-C. By incorporating unique biomimetic side chains in a non-natural backbone, the peptoid mimic captures both SP-C's hydrophobic patterning and its helical secondary structure. Despite the differences in structure, both SP-C33 and the SP-C peptoid mimic capture many requisite features of SP-C. In a surfactant environment, these analogues also replicate many of the key surface activities necessary for a functional biomimetic surfactant therapy while overcoming the difficulties associated with the natural protein. With improved stability, greater production potential, and elimination of possible pathogenic contamination, these biomimetic surfactant formulations offer not only the potential to improve the treatment of respiratory distress syndrome but also the opportunity to treat other respiratory-related disorders. 相似文献
This paper reports large light-induced reversible and elastic responses of graphene nanoplatelet (GNP) polymer composites. Homogeneous mixtures of GNP/polydimethylsiloxane (PDMS) composites (0.1-5 wt%) were prepared and their infrared (IR) mechanical responses studied with increasing pre-strains. Using IR illumination, a photomechanically induced change in stress of four orders of magnitude as compared to pristine PDMS polymer was measured. The actuation responses of the graphene polymer composites depended on the applied pre-strains. At low levels of pre-strain (3-9%) the actuators showed reversible expansion while at high levels (15-40%) the actuators exhibited reversible contraction. The GNP/PDMS composites exhibited higher actuation stresses compared to other forms of nanostructured carbon/PDMS composites, including carbon nanotubes (CNTs), for the same fabrication method. An extraordinary optical-to-mechanical energy conversion factor (η(M)) of 7-9 MPa W(-1) for GNP-based polymer composite actuators is reported. 相似文献
Wireless capsule endoscopy (WCE) allows for comfortable video explorations of the gastrointestinal (GI) tract, with special indication for the small bowel. In the other segments of the GI tract also accessible to probe gastroscopy and colonscopy, WCE still exhibits poorer diagnostic efficacy. Its main drawback is the impossibility of controlling the capsule movement, which is randomly driven by peristalsis and gravity. To solve this problem, magnetic maneuvering has recently become a thrust research area. Here, we report the first demonstration of accurate robotic steering and noninvasive 3-D localization of a magnetically enabled sample of the most common video capsule (PillCam, Given Imaging Ltd, Israel) within each of the main regions of the GI tract (esophagus, stomach, small bowel, and colon) in vivo, in a domestic pig model. Moreover, we demonstrate how this is readily achievable with a robotic magnetic navigation system (Niobe, Stereotaxis, Inc, USA) already used for cardiovascular clinical procedures. The capsule was freely and safely moved with omnidirectional steering accuracy of 1°, and was tracked in real time through fluoroscopic imaging, which also allowed for 3-D localization with an error of 1 mm. The accuracy of steering and localization enabled by the Stereotaxis system and its clinical accessibility world wide may allow for immediate and broad usage in this new application. This anticipates magnetically steerable WCE as a near-term reality. The instrumentation should be used with the next generations of video capsules, intrinsically magnetic and capable of real-time optical-image visualization, which are expected to reach the market soon. 相似文献
Two compact switchless dual-band load networks for class-E power amplifier (PA) operating at 800 and 1900 MHz are proposed, featuring small area and low loss which will be suitable for non-concurrent dual-band PA module in handset. Theoretical analysis and design equations are provided along with a loss model, including loss in the transistor and in the load network. Loss model is extracted for each structure to find the design parameters for optimized and balanced efficiency in both bands. Both designs are fabricated on Rogers RO4003 substrate with lumped components. Full PA simulations of both bands are carried out with co-simulation using a Triquint TGF2023-2-10 GaN transistor model, lumped components and EM models of load network layouts for both structures. The PA with transformer-based load network achieves a power added efficiency of 68.6 % at low band and 62.6 % at high band at an output power of 37.8 and 36.7 dBm respectively. The overall area consumed by the load network is 13.5 × 9.6 mm2. The LC-based PA has a similar PAE of 68.3 and 60 % at low band and high band, respectively. The output power is 38.1 dBm in the low band and 37 dBm in the high-band. The overall area consumed by the load network is 9 × 10 mm2相似文献
The influence of modifying a jet's exit flow pattern on both the near and far-field turbulent mixing processes and on the resulting combustion performance, is explored. This reveals that, in contradiction to some common assumptions, increasing the coherence of large-scale motions can decrease molecular mixing rates, and yet can still be beneficial in some applications.
Even relatively minor changes to the exit flow pattern of a non-reacting round jet, through changes to the nozzle profile are found to propagate downstream into the far field, apparently through the underlying turbulent structure. Importantly, while a jet from a smoothly contracting nozzle is found to have higher rates of entrainment, mean spread and mean decay of the scalar field than does a long pipe jet, it has a lower rate of molecular mixing. That is, increased large-scale mixing does not necessarily result in increased fine-scale mixing. A range of devices are reviewed which enhance, or stimulate the large-scale, coherent motions in an emerging jet using acoustic, mechanical or fluidic methods. The available evidence suggests that those methods which induce instantaneously asymmetric flow structure are more effective at increasing the near-field spreading than are those which induce instantaneously axisymmetric flow structure. Only limited data are available of the effects of such near-field changes on the far-field properties. Nevertheless, the available data reveal a clear trend that this near-field flow undergoes a transition to a far-field state whose spread and decay is comparable with that of a steady jet, albeit being indelibly altered by the near-field excitation. It also suggests that “self-exciting” devices (i.e. that are not externally forced), cause a net reduction in the total entrainment relative to the unexcited jet, due to the losses induced by the device itself. Nevertheless, the changes which they can impart to the flow, such as redistributing the turbulent energy from the fine to the larger scales, can be beneficial for combustion in applications where high radiant heat transfer is desirable.
Precessing and flapping jets are found to cause an increase in flame volume relative to an equivalent simple jet (SJ), implying lower molecular mixing rates. However, importantly, this decrease in mixing is achieved with no increase in the flame length. Rather the width to length ratio of these flames is increased significantly. This is of practical significance because the length of a flame is often the limiting dimension in industrial systems. The reduced strain-rates lead to an increased presence of soot within the flame, while not, in general, significantly influencing the emission of soot from the flame. The increased volume of soot leads to increased radiation, which in turn acts to reduce flame temperature, so lowering thermal NOx emissions through a global residence time–temperature reduction. For example, in full-scale cement kilns these burner nozzles are found to reduce NOx emissions by around 40–60% and increase fuel efficiency (or output) by around 5–10%. 相似文献