首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   545篇
  免费   27篇
  国内免费   1篇
电工技术   9篇
综合类   1篇
化学工业   186篇
金属工艺   8篇
机械仪表   12篇
建筑科学   12篇
矿业工程   1篇
能源动力   45篇
轻工业   75篇
水利工程   5篇
无线电   54篇
一般工业技术   58篇
冶金工业   26篇
原子能技术   2篇
自动化技术   79篇
  2024年   3篇
  2023年   13篇
  2022年   21篇
  2021年   42篇
  2020年   27篇
  2019年   23篇
  2018年   35篇
  2017年   26篇
  2016年   33篇
  2015年   19篇
  2014年   30篇
  2013年   63篇
  2012年   36篇
  2011年   42篇
  2010年   30篇
  2009年   24篇
  2008年   17篇
  2007年   4篇
  2006年   9篇
  2005年   8篇
  2004年   2篇
  2003年   5篇
  2002年   1篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1997年   8篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1973年   1篇
  1965年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有573条查询结果,搜索用时 15 毫秒
101.
102.
103.
The sintering behaviour of alumina–Y-TZP composites prepared by slip-casting technique were studied. Slip-cast samples containing varying amounts of Y-TZP ranging up to 90 vol% were prepared and evaluated. Sintering studies were carried out at 1450°C to 1600°C. Sintered samples were characterised where appropriate to determine phases present, grain sizes, bulk density and mechanical properties. Good correlation was obtained between the calculated prepared powder density and experimental results. The sintered bulk density of the composites was observed to increase with increasing Y-TZP content and sintering temperature up to 1550°C. Maximum hardness values (>14 GPa) were obtained for all samples containing <60 vol% Y-TZP and when sintered at 1550°C. It has been found that the additions of up to 50 vol% Y-TZP was effective in suppressing Al2O3 grain growth.  相似文献   
104.
In this Review, an effort is made to discuss the most recent progress and future trend in the two‐way traffic of the interactions between plants and nanoparticles (NPs). One way is the use of plants to synthesize NPs in an environmentally benign manner with a focus on the mechanism and optimization of the synthesis. Another way is the effects of synthetic NPs on plant fate with a focus on the transport mechanisms of NPs within plants as well as NP‐mediated seed germination and plant development. When NPs are in soil, they can be adsorbed at the root surface, followed by their uptake and inter/intracellular movement in the plant tissues. NPs may also be taken up by foliage under aerial deposition, largely through stomata, trichomes, and cuticles, but the exact mode of NP entry into plants is not well documented. The NP–plant interactions may lead to inhibitory or stimulatory effects on seed germination and plant development, depending on NP compositions, concentrations, and plant species. In numerous cases, radiation‐absorbing efficiency, CO2 assimilation capacity, and delay of chloroplast aging have been reported in the plant response to NP treatments, although the mechanisms involved in these processes remain to be studied.  相似文献   
105.
Mesoporous Au films consisting of a network of interconnected Au ligaments around ultra-large pores were found to exhibit a promising electrocatalytic activity towards sluggish reactions. Mesoporous Au films with pore sizes up to 25 nm were successfully fabricated using a polymeric micelle approach. A superior catalytic activity of the mesoporous Au films towards methanol oxidation was confirmed, which was thoroughly analyzed and compared with that of other Au materials. An intrinsic investigation on the high catalytic activity revealed that the superior performance of the as-prepared mesoporous Au film was related to its unique atomic structures around the mesopores with well-crystallized facets and several step/kink sites on the Au surfaces. These findings showcase a strategic and feasible design for preparing highly active Au-based catalysts that could be used as promising candidates in electrocatalytic applications.
  相似文献   
106.
Endothelial cells (ECs) lining the inner lumen of blood vessels are continuously subjected to hemodynamic shear stress, which is known to modify EC morphology and biological activity. This paper describes a self-contained microcirculatory EC culture system that efficiently studies such effects of shear stress on EC alignment and elongation in vitro. The culture system is composed of elastomeric microfluidic cell shearing chambers interfaced with computer-controlled movement of piezoelectric pins on a refreshable Braille display. The flow rate is varied by design of channels that allow for movement of different volumes of fluid per variable-speed pump stroke. The integrated microfluidic valving and pumping system allowed primary EC seeding and differential shearing in multiple compartments to be performed on a single chip. The microfluidic flows caused ECs to align and elongate significantly in the direction of flow according to their exposed levels of shear stress. This microfluidic system overcomes the small flow rates and the inefficiencies of previously described microfluidic and macroscopic systems respectively to conveniently perform parallel studies of EC response to shear stress.  相似文献   
107.
Boundary effect in digital pathology is a phenomenon where the tissue shapes of biopsy samples get distorted during the sampling process. The morphological pattern of an epithelial layer is greatly affected. Theoretically, the shape deformation model can normalise the distortions, but it needs a 2D image. Curvatures theory, on the other hand, is not yet tested on digital pathology images. Therefore, this work proposed a curvature detection to reduce the boundary effects and estimates the epithelial layer. The boundary effect on the tissue surfaces is normalised using the frequency of a curve deviates from being a straight line. The epithelial layer’s depth is estimated from the tissue edges and the connected nucleolus only. Then, the textural and spatial features along the estimated layer are used for dysplastic tissue detection. The proposed method achieved better performance compared to the whole tissue regions in terms of detecting dysplastic tissue. The result shows a leap of kappa points from fair to a substantial agreement with the expert’s ground truth classification. The improved results demonstrate that curvatures have been effective in reducing the boundary effects on the epithelial layer of tissue. Thus, quantifying and classifying the morphological patterns for dysplasia can be automated. The textural and spatial features on the detected epithelial layer can capture the changes in tissue.  相似文献   
108.
Feature selection and sentiment analysis are two common studies that are currently being conducted; consistent with the advancements in computing and growing the use of social media. High dimensional or large feature sets is a key issue in sentiment analysis as it can decrease the accuracy of sentiment classification and make it difficult to obtain the optimal subset of the features. Furthermore, most reviews from social media carry a lot of noise and irrelevant information. Therefore, this study proposes a new text-feature selection method that uses a combination of rough set theory (RST) and teaching-learning based optimization (TLBO), which is known as RSTLBO. The framework to develop the proposed RSTLBO includes numerous stages: (1) acquiring the standard datasets (user reviews of six major U.S. airlines) which are used to validate search result feature selection methods, (2) pre-processing of the dataset using text processing methods. This involves applying text processing methods from natural language processing techniques, combined with linguistic processing techniques to produce high classification results, (3) employing the RSTLBO method, and (4) using the selected features from the previous process for sentiment classification using the Support Vector Machine (SVM) technique. Results show an improvement in sentiment analysis when combining natural language processing with linguistic processing for text processing. More importantly, the proposed RSTLBO feature selection algorithm is able to produce an improved sentiment analysis.  相似文献   
109.
A technique was developed for transfer of fat and polychlorinated biphenyls from cod liver oil into the lipophilic gel Lipidex 5000. Subsequent elution of the gel separated about 60% of the fat from the sample. Following further purification on aluminium oxide and silica gel, toxic non-ortho- and mono-ortho-PCB congeners were isolated in two separate fractions on charcoal. Recoveries were studied by addition of twelve different PCB congeners to 0.2 g of fat. The non-ortho-PCBs were labelled with 13C. The recoveries of 5-50 ng of the unlabelled compounds were 80-100% and those of 50-100 pg of the labelled compounds were 76-106%.  相似文献   
110.
Colloidal silver nanoparticles with a size of 5.5 ± 1.1 nm were prepared by chemical reduction using polyethylene glycol (PEG). Silver nanoparticles were incorporated into low-density polyethylene (LDPE) by melt blending and subsequent hot pressing at 140 °C to produce nanocomposite film with an average thickness of 0.7 mm. PEG was added at 5% weight of polymer as a compatibilizer agent in order to prevent agglomeration and provide uniform distribution of nanoparticles in polymer matrix. Antimicrobial activity of silver nanocomposites against Escherichia coli ATCC 13706, Staphylococcus aureus ATCC12600, and Candida albicans ATCC10231 was evaluated by semi-qualitative agar diffusion test and quantitative dynamic shake flask test. Mechanical properties of nanocomposites were not significantly different from silver-free LDPE-containing PEG films (p > 0.05), and silver nanoparticles did not form chemical bonding with the polymer. LDPE-silver nanocomposite samples by more than 6.69 ppm silver nanoparticles showed considerable antimicrobial clear zone. LDPE-silver nanocomposite affected growth kinetic parameters of the examined bacteria and is more efficient on S. aureus than E. coli. Polyethylene-silver nanocomposites containing 22.64 ppm silver nanoparticles could reduce 57.8% growth rate and 23.3% maximum bacterial concentration and increase 35.8% lag time of S. aureus. This study shows the potential use of LDPE-silver nanocomposite as antimicrobial active film. Antimicrobial efficiency of silver nanocomposite depends on silver nanoparticles concentration; however, high level of silver nanoparticles may lead to weakening of mechanical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号