首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   545篇
  免费   27篇
  国内免费   1篇
电工技术   9篇
综合类   1篇
化学工业   186篇
金属工艺   8篇
机械仪表   12篇
建筑科学   12篇
矿业工程   1篇
能源动力   45篇
轻工业   75篇
水利工程   5篇
无线电   54篇
一般工业技术   58篇
冶金工业   26篇
原子能技术   2篇
自动化技术   79篇
  2024年   3篇
  2023年   13篇
  2022年   21篇
  2021年   42篇
  2020年   27篇
  2019年   23篇
  2018年   35篇
  2017年   26篇
  2016年   33篇
  2015年   19篇
  2014年   30篇
  2013年   63篇
  2012年   36篇
  2011年   42篇
  2010年   30篇
  2009年   24篇
  2008年   17篇
  2007年   4篇
  2006年   9篇
  2005年   8篇
  2004年   2篇
  2003年   5篇
  2002年   1篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1997年   8篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1973年   1篇
  1965年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有573条查询结果,搜索用时 0 毫秒
81.
Advanced communication systems, such as long term evolution (LTE) and LTE-advanced (LTE-A) systems, promise to increase the number of users with high-speed data exchange. However, it leads to spectrum scarcity because of the huge size of data exchange with limited spectrum resources. Cognitive radio (CR) technique is considered the best solution for this spectrum scarcity problem. Spectrum sensing (SS), one of the CR techniques is used to detect the spectrum hole of primary user (PU) without interference with PU. In this paper, several SS approaches for LTE and LTE-A systems are investigated in the CR system. These SS approaches are based on two techniques, namely energy detection and cyclostationary feature detection techniques. The first technique includes four approaches of auto-correlation based advanced energy, time domain detection, Welch periodogram and two-stage model algorithms, while the second technique contains two approaches, namely pilot induced cyclostationary and second order cyclostationary algorithms. According to the analysis, the two-stage model and the second order cyclostationary algorithms are better than the other algorithms because they produce accurate results at the expense of system complexity. Hence, in general a good SS algorithms would require some trade-off between complexity and accuracy.  相似文献   
82.
An organic–inorganic nanohybrid nanocomposite was synthesized by co-precipitation method using beta-naphthoxyacetate (BNOA) as guest anion and zinc–aluminium layered double hydroxide (Zn–Al-LDH) as the inorganic host. A well-ordered nanohybrid nanocomposite was formed when the concentration of BNOA was 0.08 M and the molar ratio of Zn to Al, R = 2. Basal spacing of layered double hydroxide containing nitrate ions expanded from 8.9 to 19.5 Å in resulting of Zn–Al-BNOA nanocomposite was obtained indicates that beta-naphthoxyacetate was successfully intercalated into interlayer spaces of layered double hydroxide. It was also found out the BET surface area increased from 1.13 to 42.79 m2 g?1 for Zn–Al-LDH and Zn–Al-BNOA nanocomposite, respectively. The BJH average pore diameter of the synthesized nanocomposite is 199 Å which shows mesoporous-type of material. CHNS analysis shows the Zn–Al-BNOA nanocomposite material contains 36.2 % (w/w) of BNOA calculated based on the percentage of carbon in the sample. Release of BNOA from the lamella of Zn–Al-BNOA was controlled by the zeroth and first order kinetics at the beginning of the deintercalation process up to 200 min and controlled by pseudo-second order kinetics for the whole process. This study suggests that layered double hydroxide can be used as a carrier for organic acid herbicide controlled release formulation of BNOA.  相似文献   
83.
ABSTRACT

Nonlinear, large inertia with long dead time is always associated with the main steam temperature parameter in coal fired power plant. Successful control of the main steam temperature within ±2°C of its setpoint is the ultimate target for coal-fired power plant operators. Two of the most common main steam temperature circuit are primary superheater spray and secondary superheater spray. Various methods were used to model the primary superheater spray control valve opening, and the neural network remains one of the most popular choices among researchers. It remains inconclusive which neural network algorithm types, setup, number of layers, and training algorithm will give the best result. As such, the paper shows the best setup for the neural network algorithm based on sensitivity analysis methodology for one hidden layer. The inputs selected for the neural network are generator output, main steam flow, total spray flow, and secondary superheater outlet steam temperature, while the output selected is primary spray flow control valve opening.  相似文献   
84.
This paper presents a non-stoichiometric and thermodynamic model for steam reforming of Imperata cylindrica bio-oil for biohydrogen production. Thermodynamic analyses of major bio-oil components such as formic acid, propanoic acid, oleic acid, hexadecanoic acid and octanol produced from fast pyrolysis of I. cylindrica was examined. Sensitivity analyses of the operating conditions; temperature (100–1000 °C), pressure (1–10 atm) and steam to fuel ratio (1–10) were determined. The results showed an increase in biohydrogen yield with increasing temperature although the effect of pressure was negligible. Furthermore, increase in steam to fuel ratio favoured biohydrogen production. Maximum yield of 60 ± 10% at 500–810 °C temperature range and steam to fuel ratio 5–9 was obtained for formic acid, propanoic acid and octanol. The heavier components hexadecanoic and oleic acid maximum hydrogen yield are 40% (740 °C and S/F = 9) and 43% (810 °C and S/F = 8) respectively. However, the effect of pressure on biohydrogen yield at the selected reforming temperatures was negligible. Overall, the results of the study demonstrate that the non-stoichiometry and thermodynamic model can successfully predict biohydrogen yield as well as the composition of gas mixtures from the gasification and steam reforming of bio-oil from biomass resources. This will serve as a useful guide for further experimental works and process development.  相似文献   
85.
Proton exchange membranes were prepared by radiation‐induced grafting of styrene onto commercial poly(tetrafluoroethylene‐co‐hexafluoropropylene) films using a simultaneous irradiation technique followed by a sulfonation reaction. The resulting membranes were characterized by measuring their physicochemical properties such as water uptake, ion exchange capacity, hydration number, and proton conductivity as a function of the degree of grafting. The thermal properties (melting and glass transition temperatures) and thermal stability of the membrane were also investigated using differential scanning calorimetry and thermal gravimetric analysis, respectively. Membranes having degrees of grafting of 16% and above showed proton conductivity of the magnitude of 10−2 Ω−1 cm−1 at room temperature, as well as thermal stability at up to 290°C under an oxygen atmosphere. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2443–2453, 2000  相似文献   
86.
The physical and chemical properties of polystyrene grafted and sulfonated polytetrafluoroethylene (PTFE‐graft‐PSSA) membranes prepared by radiation‐induced grafting of styrene onto commercial PTFE films using simultaneous irradiation technique followed by a sulfonation reaction are evaluated. The investigated properties include water uptake, ion exchange capacity, hydration number and ionic conductivity. All properties are correlated with the amount of grafted polystyrene (degree of grafting). The thermal stability of the membrane evaluated by thermal gravimetric analysis (TGA) is compared with that of original and grafted PTFE films. The membrane surface structural properties are analysed by electron spectroscopy for chemical analysis (ESCA). Membranes having degrees of grafting of 18 % and above show a good combination of physical and chemical properties that allow them to be proposed for use as proton conducting membranes, provided that they have sufficient chemical and mechanical stability. © 2000 Society of Chemical Industry  相似文献   
87.
Distributed systems that consist of workstations connected by high performance interconnects offer computational power comparable to moderate size parallel machines. Middleware like distributed shared memory (DSM) or distributed shared objects (DSO) attempts to improve the programmability of such hardware by presenting to application programmers interfaces similar to those offered by shared memory machines. This paper presents the portable Indigo data sharing library which provides a small set of primitives with which arbitrary shared abstractions are easily and efficiently implemented across distributed hardware platforms. Sample shared abstractions implemented with Indigo include DSM as well as fragmented objects, where the object state is split across different machines and where interfragment communications may be customized to application-specific consistency needs. The Indigo library's design and implementation are evaluated on two different target platforms: a workstation cluster and an IBM SP2 machine. As part of this evaluation, a novel DSM system and consistency protocol are implemented and evaluated with several high performance applications. Application performance attained with the DSM system is compared to the performance experienced when utilizing the underlying basic message-passing facilities or when employing Indigo to construct customized fragmented objects implementing the application's shared state. Such experimentation results in insights concerning the efficient implementation of DSM systems (e.g. how to deal with false sharing). It also leads to the conclusion that Indigo provides a sufficiently rich set of abstractions for efficient implementation of the next generation of parallel programming models for high performance machines. © 1998 John Wiley & Sons, Ltd.  相似文献   
88.
PFA-g-polystyrene graft copolymers were prepared by simultaneous radiation-induced graft copolymerization of styrene onto poly(tetrafluoroethylene-co-perfluorovinyl ether) (PFA) films. The effects of grafting conditions such as monomer concentration, dose, and dose rate were investigated. Three solvents, i.e., methanol, benzene, and dichloromethane, were used as diluents in this grafting system. Of the three solvents employed, dichloromethane was found to greatly enhance the grafting process, and the degree of grafting increased with the increase of monomer concentration until it reached its highest value at a styrene concentration of 60 (vol %). The dependence of the initial rate of grafting on the monomer concentration was found to be of the order of 1.2. The degree of grafting was found to increase with the increase in irradiation dose, while it considerably decreased with the increase in dose rate. The formation of graft copolymers was confirmed by FTIR analysis. The structural investigation by X-ray diffraction (XRD) shows that the degree of crystallinity content of such graft copolymers decreases with the increase in grafting, and consequently, the mechanical properties of the graft copolymers were influenced to some extent. Both tensile strength and elongation percent decreased with the increase in the degree of grafting. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2095–2102, 1999  相似文献   
89.
Engineered magnetic iron oxide nanoparticles with surprisingly high antimicrobial activity and excellent safety profiles to mammalian cell lines have been developed. Hematite hollow nanospheres (HNSs) are prepared by a facile hard templating method; reduction of hematite HNSs by H2 leads to magnetite HNSs. The antimicrobial activity of magnetite HNSs towards Gram negative (Escherichia coli) and Gram positive (Staphylococcus epidermidis) bacteria is evaluated against hematite HNSs and conventional magnetite (C‐magnetite; diameter <50 nm). Superior antibacterial performance is observed for magnetite HNSs towards both E. coli and S. epidermidis over hematite HNSs and C‐magnetite. The origin of the antimicrobial activity of magnetite HNSs is the high leaching of iron ions in the presence of microorganisms, which leads to high generation of reactive oxygen species. Magnetite HNSs allow multiple‐fold increase in the generation of soluble iron ions over hematite HNSs and C‐magnetite, showing that control over both the composition and nanostructure is crucial to tune the antimicrobial activity of iron oxides. Based on the current findings, magnetic HNSs show promising potential antimicrobial applications.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号