首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   10篇
  国内免费   1篇
电工技术   2篇
化学工业   68篇
金属工艺   7篇
机械仪表   6篇
建筑科学   8篇
矿业工程   1篇
能源动力   11篇
轻工业   20篇
石油天然气   3篇
无线电   45篇
一般工业技术   74篇
冶金工业   322篇
原子能技术   1篇
自动化技术   45篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   8篇
  2018年   5篇
  2016年   11篇
  2015年   6篇
  2014年   8篇
  2013年   18篇
  2012年   11篇
  2011年   17篇
  2010年   8篇
  2009年   9篇
  2008年   12篇
  2007年   10篇
  2006年   14篇
  2005年   9篇
  2004年   9篇
  2003年   13篇
  2002年   5篇
  2001年   10篇
  2000年   7篇
  1999年   14篇
  1998年   94篇
  1997年   54篇
  1996年   47篇
  1995年   27篇
  1994年   20篇
  1993年   22篇
  1992年   7篇
  1991年   6篇
  1990年   8篇
  1989年   8篇
  1988年   14篇
  1986年   5篇
  1985年   8篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   6篇
  1978年   2篇
  1977年   8篇
  1976年   20篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1971年   4篇
  1967年   2篇
排序方式: 共有613条查询结果,搜索用时 31 毫秒
91.
92.
Electron beam induced deposition (EBID) has recently been developed into a method to directly write optically active three-dimensional nanostructures. For this purpose a metal-organic precursor gas (here dimethyl-gold(III)-acetylacetonate) is introduced into the vacuum chamber of a scanning electron microscope where it is cracked by the focused electron beam. Upon cracking the aforementioned precursor gas, 3D deposits are realized, consisting of gold nanocrystals embedded in a carbonaceous matrix. The carbon content in the deposits hinders direct plasmonic applications. However, it is possible to activate the deposited nanostructures for plasmonics by coating the EBID structures with a continuous silver layer of a few nanometers thickness. Within this silver layer collective motions of the free electron gas can be excited. In this way, EBID structures with their intriguing precision at the nanoscale have been arranged in arrays of free-standing dimer antenna structures with nanometer sized gaps between the antennas that face each other with an angle of 90°. These dimer antenna ensembles can constitute a reproducibly manufacturable substrate for exploiting the surface enhanced Raman effect (SERS). The achieved SERS enhancement factors are of the order of 10? for the incident laser light polarized along the dimer axes. To prove the signal enhancement in a Raman experiment we used the dye methyl violet as a robust test molecule. In future applications the thickness of such a silver layer on the dimer antennas can easily be varied for tuning the plasmonic resonances of the SERS substrate to match the resonance structure of the analytes to be detected.  相似文献   
93.
Catalyst deactivation mechanisms on MgO-supported Au(6) clusters are studied for the CO oxidation reaction via first-principle kinetic Monte Carlo simulations and shown to depend on support vacancies. In defect-poor MgO or in the presence of a Mg vacancy, O(2) does not bind to the clusters and the catalyst is poisoned by CO. On Au clusters interacting with O vacancies of the support, O(2) can be chemisorbed and transient activity is observed. In this case, an unexpected catalyst "breathing" mechanism (restructuring) leads to carbonate formation and catalyst deactivation, rationalizing several experimental observations. Our study underscores the importance of the cluster's charge state and dynamics on catalytic activity.  相似文献   
94.
Osteocytes—the central regulators of bone remodeling—are enclosed in a network of microcavities (lacunae) and nanocanals (canaliculi) pervading the mineralized bone. In a hitherto obscure process related to aging and disease, local plugs in the lacuno‐canalicular network disrupt cellular communication and impede bone homeostasis. By utilizing a suite of high‐resolution imaging and physics‐based techniques, it is shown here that the local plugs develop by accumulation and fusion of calcified nanospherites in lacunae and canaliculi (micropetrosis). Two distinctive nanospherites phenotypes are found to originate from different osteocytic elements. A substantial deviation in the spherites' composition in comparison to mineralized bone further suggests a mineralization process unlike regular bone mineralization. Clearly, mineralization of osteocyte lacunae qualifies as a strong marker for degrading bone material quality in skeletal aging. The understanding of micropetrosis may guide future therapeutics toward preserving osteocyte viability to maintain mechanical competence and fracture resistance of bone in elderly individuals.  相似文献   
95.
96.
97.
Summary A constitutive model is derived for the elastic behavior of rubbers at three-dimensional deformations with finite strains. An elastomer is thought of as an incompressible network of flexible chains bridged by permanent junctions that move affinely with the bulk medium. The constraints imposed by surrounding macromolecules on configurations of an individual chain are introduced by combining the Flory–Erman and Erman–Monnerie approaches. To describe inter-chain interactions in a tractable way, the conventional picture of a tube where a chain is confined is replaced by geometrical restrictions on the positions of its ends and center of mass. The constraints on the chain ends are formulated within the traditional Flory concept, whereas those on the position of center of mass are described following the Ronca–Allegra scenario. Stress–strain relations for a network of constrained chains are derived by using the laws of thermodynamics. The constitutive equations involve four adjustable parameters with transparent physical meaning. The material constants are found by fitting experimental data on elastomers at uniaxial and equi-biaxial tensions and pure shear. It is demonstrated that (i) the model provides an acceptable prediction of stresses in a test with one deformation mode, when its parameters are found by matching observations in an experiment with another mode, and (ii) material constants are affected by chemical composition of elastomers in a physically plausible way.  相似文献   
98.
A series of hypervelocity impact tests have been performed on aluminum alloy Whipple shields to investigate failure mechanisms and performance limits in the shatter regime. Test results demonstrated a more rapid increase in performance than predicted by the latest iteration of the JSC Whipple shield ballistic limit equation (BLE) following the onset of projectile fragmentation. This increase in performance was found to level out between 4.0 and 5.0 km/s, with a subsequent decrease in performance for velocities up to 5.6 km/s. For a detached spall failure criterion, the failure limit was found to continually decrease up to a velocity of 7.0 km/s, substantially varying from the BLE, while for perforation-based failure an increase in performance was observed. An existing phenomenological ballistic limit curve was found to provide a more accurate reproduction of shield behavior that the BLE, prompting an investigation of appropriate models to replace linear interpolation in shatter regime. A largest fragment relationship was shown to provide accurate predictions up to 4.3 km/s, which was extended to the incipient melt limit (5.6 km/s) based on an assumption of no additional fragmentation. Alternate models, including a shock enhancement approach and debris cloud cratering model are discussed as feasible alternatives to the proposed curve in the shatter regime, due to conflicting assumptions and difficulties in extrapolating the current approach to oblique impact. These alternate models require further investigation.  相似文献   
99.
We present a novel minimally invasive postprocessing method for catalyst templating based on focused charged particle beam structuring, which enables a localized vapor-liquid-solid (VLS) growth of individual nanowires on prefabricated three-dimensional micro- and nanostructures. Gas-assisted focused electron beam induced deposition (FEBID) was used to deposit a SiO(x) surface layer of about 10 × 10 μm(2) on top of a silicon atomic force microscopy cantilever. Gallium focused ion beam (FIB) milling was used to make a hole through the SiO(x) layer into the underlying silicon. The hole was locally filled with a gold catalyst via FEBID using either Me(2)Au(tfac) or Me(2)Au(acac) as precursor. Subsequent chemical vapor deposition (CVD)-induced VLS growth using a mixture of SiH(4) and Ar resulted in individual high quality crystalline nanowires. The process, its yield, and the resulting angular distribution/crystal orientation of the silicon nanowires are discussed. The presented combined FIB/FEBID/CVD-VLS process is currently the only proven method that enables the growth of individual monocrystalline Si nanowires on prestructured substrates and devices.  相似文献   
100.
Observations are reported on isotactic polypropylene (i) in a series of tensile tests with a constant strain rate on specimens annealed for 24 h at various temperatures in the range from 110 to 150 °C, (ii) in two series of creep tests in the subyield region of deformations on samples not subjected to thermal treatment and on specimens annealed at 140 °C, and (iii) in a series of tensile relaxation tests on non-annealed specimens. Constitutive equations are derived for the elastoplastic and non-linear viscoelastic responses of semicrystalline polymers. A polymer is treated as an equivalent transient network of macro-molecules bridged by junctions (physical cross-links, entanglements and lamellar blocks). The network is assumed to be highly heterogeneous, and it is thought of as an ensemble of meso-regions with different activation energies for separation of strands from temporary nodes. The elastoplastic behavior is modelled as sliding of junctions in meso-domains with respect to their reference positions driven by macro-deformation. The viscoelastic response is attributed to detachment of active strands from temporary junctions and attachment of dangling chains to the network. Constitutive equations for isothermal deformations with small strains are derived by using the laws of thermodynamics. Adjustable parameters in the stress–strain relations are found by fitting the experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号