首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   920篇
  免费   69篇
  国内免费   4篇
电工技术   9篇
化学工业   247篇
金属工艺   29篇
机械仪表   25篇
建筑科学   19篇
矿业工程   1篇
能源动力   25篇
轻工业   16篇
石油天然气   7篇
无线电   94篇
一般工业技术   306篇
冶金工业   85篇
原子能技术   11篇
自动化技术   119篇
  2024年   1篇
  2023年   11篇
  2022年   27篇
  2021年   48篇
  2020年   20篇
  2019年   38篇
  2018年   38篇
  2017年   33篇
  2016年   45篇
  2015年   36篇
  2014年   34篇
  2013年   56篇
  2012年   71篇
  2011年   75篇
  2010年   45篇
  2009年   57篇
  2008年   51篇
  2007年   46篇
  2006年   51篇
  2005年   38篇
  2004年   29篇
  2003年   28篇
  2002年   25篇
  2001年   10篇
  2000年   10篇
  1999年   7篇
  1998年   5篇
  1997年   8篇
  1996年   7篇
  1995年   6篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   3篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1956年   1篇
  1954年   2篇
排序方式: 共有993条查询结果,搜索用时 15 毫秒
161.
Carbonaceous materials including cokes, chars, and pyrolyzed coals were annealed at temperatures ranging from 973 K to 1773 K (700 °C to 1500 °C) in an inert atmosphere. Macro and microstrengths of original and annealed carbonaceous materials were characterized by the tensile strength and fracture toughness. Fracture toughness was determined for inert maceral-derived component (IMDC) and reactive maceral-derived component (RMDC) using ultramicro indentation. Experimental data obtained by tensile tests were processed using the Weibull statistical method to find “inherent” strength. Tensile strength of chars and coals was significantly increased by annealing at temperatures ranging from 973 K to 1373 K (700 °C to 1100 °C); further increase in annealing temperature to 1773 K (1500 °C) increased their tensile strength only slightly. Tensile strength of cokes decreased with the increasing annealing temperature; the major effect was observed in the temperature range from 1573 K to 1773 K (1300 °C to 1500 °C). Fracture toughness of chars and coals was enhanced significantly by heat treatment at temperatures ranging from 973 K to 1373 K (700 °C to 1100 °C) as a result of pyrolysis, while that of cokes increased slightly by heat treatment. Fracture toughness of IMDC was higher than RMDC. Macrostrength of carbonaceous materials was strongly affected by their porosity and microstrength. The effect of pore geometry on macrostrength was marginal. Decreasing the porosity was more effective compared with increasing the microstrength in improving the macrostrength of carbonaceous materials.  相似文献   
162.
Quartz and carbonaceous materials, which are used in the production of silicon as well as electrodes and refractories in the silicon furnace, contain trace elements mostly in the form of oxides. These oxides can be reduced to gaseous compounds and leave the furnace or stay in the reaction products—metal and slag. This article examines the behavior of trace elements in hydrothermal quartz and quartzite in the reaction of SiO2 with Si or SiC. Mixtures of SiO2 (quartz or quartzite), SiC, and Si in forms of lumps or pellets were heated to 1923 K and 2123 K (1650°C and 1850°C) in high purity graphite crucibles under Argon gas flow. The gaseous compounds condensed in the inner lining of the tube attached to the crucible. The phases present in the reacted charge and the collected condensates were studied quantitatively by X-ray diffraction (XRD) and qualitatively by Electron Probe Micro Analyzer (EPMA). Contaminants in the charge materials, reacted charge and condensate were analyzed by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS). Muscovite in the mineral phase of quartz melted and formed two immiscible liquid phases: an Al-rich melt at the core of the mineral, and a SiO2-rich melt at the mineral boundaries. B, Mn, and Pb in quartz were removed during heating in reducing atmosphere at temperature above 1923 K (1650°C). Mn, Fe, Al and B diffused from quartz into silicon. P concentration was under the detection limit. Quartzite and hydrothermal quartz had different initial impurity levels: quartzite remained more impure after reduction experiment but approached purity of hydrothermal quartz upon silica reduction.  相似文献   
163.
Carbon-doped titanium dioxide nanopowder has received much attention because of its higher photocatalytic performance, which is practically activated not only by UV, but also by visible light irradiation. In the present study, C-TiO2 nanopowder was synthesized by droplet injection of solution precursor in a DC-RF hybrid plasma flow system, resulting in higher photocatalytic performance even under visible light irradiation. In-flight C-TiO2 nanoparticles reacted with the high concentration of carbon in plasma flow and were then deposited on the surfaces of two quartz tubes in the upstream and downstream regions of this system. The collected C-TiO2 nanopowder contained anatase-rutile mixed-phase TiO2 and TiC, the contents of which depended on the location of the powder collection, the temperature, and the duration of plasma treatment. Highly functional C-TiO2 nanopowder collected in the downstream region exhibited a higher degradation rate of methylene blue than that of single-phase anatase TiO2, even under visible light irradiation, in spite of being TiC.  相似文献   
164.
Hexavalent chromium Cr(VI) is a notorious ground water contaminant toxic to humans and animals. Assessment of an exposure risk for aquatic receptors necessitates frequent Cr(VI) concentration data from a range of surface and groundwater locations at Cr(VI) contamination sites. In this work, we demonstrate that enhanced ultraviolet-visible (UV-vis) spectroscopy using a liquid waveguide capillary cell (LWCC) offers an easy-to-use and economical methodology for the determination of chromate anion CrO(4)(2-) in Hanford natural waters without chemical pretreatment and generation of hazardous waste. Direct determination of CrO(4)(2-) in actual surface and ground water samples with the complexities of competing ions, dissolved organics, and other potential interfering agents was achieved by measuring the chromate optical absorbance at 372 nm. For a 100 cm path length LWCC, the detection limit for chromate was found to be as low as 0.073 ppb. A quantitative relationship between the intensity of the absorbance signal and water pH allowed for the straightforward calculation of total Cr(VI) content in natural water. The described method is applicable for in-field monitoring of Cr(VI) in environmental water samples at trace levels.  相似文献   
165.
Metal nanoclusters have interesting steady state fluorescence emission, two-photon excited emission and ultrafast dynamics. A new subclass of fluorescent silver nanoclusters (Ag NCs) are NanoCluster Beacons. NanoCluster Beacons consist of a weakly emissive Ag NC templated on a single stranded DNA ("Ag NC on ssDNA") that becomes highly fluorescent when a DNA enhancer sequence is brought in proximity to the Ag NC by DNA base pairing ("Ag NC on dsDNA"). Steady state fluorescence was observed at 540 nm for both Ag NC on ssDNA and dsDNA; emission at 650 nm is observed for Ag NC on dsDNA. The emission at 550 nm is eight times weaker than that at 650 nm. Fluorescence up-conversion was used to study the dynamics of the emission. Bi-exponential fluorescence decay was recorded at 550 nm with lifetimes of 1 ps and 17 ps. The emission at 650 nm was not observed at the time scale investigated but has been reported to have a lifetime of 3.48 ns. Two-photon excited fluorescence was detected for Ag NC on dsDNA at 630 nm when excited at 800 nm. The two-photon absorption cross-section was calculated to be ~3000 GM. Femtosecond transient absorption experiments were performed to investigate the excited state dynamics of DNA-Ag NC. An excited state unique to Ag NC on dsDNA was identified at ~580 nm as an excited state bleach that related directly to the emission at 650 nm based on the excitation spectrum. Based on the optical results, a simple four level system is used to describe the emission mechanism for Ag NC on dsDNA.  相似文献   
166.
Based on a facile one-pot templating synthesis, using a TS-1 zeolite recipe whereby part of the zeolite structure directing agent is replaced by a mesopore templating agent, a trimodal material is formed. The resulting meso-TSM material combines mesoporosity (Ti-MCM-41) with zeolitic features (TS-1) and a unique sheet-like morphology with uniform macroporous voids (macroholes). Moreover, the macrohole formation, mesoporosity and zeolitic properties of the meso-TSM material can be controlled in a straightforward way by adjusting the length of the hydrothermal treatment. This newly developed material may imply great potential for catalytic redox applications and diffusion limitated processes because of its highly tunable character in all three dimensions (micro-, meso- and macroporous scale).  相似文献   
167.
The His-Asn-His (HNH) motif characterizes the active sites of a large number of different nucleases such as homing endonucleases, restriction endonucleases, structure-specific nucleases and, in particular, nonspecific nucleases. Several biochemical studies have revealed an essential catalytic function for the first amino acid of this motif in HNH nucleases. This histidine residue was identified as the general base that activates a water molecule for a nucleophilic attack on the sugar phosphate backbone of nucleic acids. Replacement of histidine by an amino acid such as glycine or alanine, which lack the catalytically active imidazole side chain, leads to decreases of several orders of magnitude in the nucleolytic activities of members of this nuclease family. We were able, however, to restore the activity of HNH nuclease variants (i.e., EndA (Streptococcus pneumoniae), SmaNuc (Serratia marcescens) and NucA (Anabaena sp.)) that had been inactivated by His→Gly or His→Ala substitution by adding excess imidazole to the inactive enzymes in vitro. Imidazole clearly replaces the missing histidine side chain and thereby restores nucleolytic activity. Significantly, this chemical rescue could also be observed in vivo (Escherichia coli). The in vivo assay might be a promising starting point for the development of a high-throughput screening system for functional EndA inhibitors because, unlike the wild-type enzyme, the H160G and H160A variants of EndA can easily be produced in E. coli. A simple viability assay would allow inhibitors of EndA to be identified because these would counteract the toxicities of the chemically rescued EndA variants. Such inhibitors could be used to block the nucleolytic activity of EndA, which as a surface-exposed enzyme in its natural host destroys the DNA scaffolds of neutrophil extracellular traps (NETs) and thereby allows S. pneumoniae to escape the innate immune response.  相似文献   
168.
A barrier layer of undoped TiO2 was deposited on the Nb‐doped TiO2 electrode to suppress the recombination at the Nb‐doped TiO2/dye–electrolyte interface for highly efficient dye‐sensitized solar cells (DSCs). The Nb content in TiO2 was varied in a range of 0.7–3.5 mol% to modify the TiO2 energy‐band structure. Nb‐doped TiO2/dye interfaces were characterized by a combination of ultraviolet photoemission spectroscopy and optical absorption spectroscopy measurements, allowing the determination of the conduction band minimum (CBM) of the TiO2 electrode and the lowest unoccupied molecular orbital of the N719 dye. The lowering of TiO2 CBM by Nb doping induced the increase in short‐circuit current of DSCs. However, open‐circuit voltage and fill factor are decreased, and this result was ascribed to the enhanced recombination at the Nb‐doped TiO2/dye–electrolyte interface. The effect of doping on charge transport in DSCs was analyzed using electrochemical impedance spectroscopy. We have shown that by introducing of TiO2 barrier layer, the Nb doping content, which results in DSC highest efficiency, can be increased because of the suppression of the dopant‐induced recombination. The energy conversion efficiency of the solar cells increased from 7.8% to 9.0% when undoped TiO2 electrode is replaced with electrode doped with 2.7 mol% of Nb because of the improvement of the electron injection and collection efficiencies. The correlation between the electronic structure of the TiO2 electrode, charge transfer characteristics, and photovoltaic parameters of DSCs is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
169.
Polymeric substrates are of importance in plastic electronics. However, polymeric surfaces can exhibit different morphologies depending on whether they are amorphous or semi-crystalline. This work focuses on the impact of the surface structure of bisphenol A polycarbonate substrates on the nucleation and growth of a p-type semi-conductor, namely zinc phthalocyanine (ZnPc). ZnPc films were deposited under high vacuum at different substrate temperatures on oriented semi-crystalline as well as amorphous substrates of PC. The oriented substrates of PC were prepared by a method combining mechanical rubbing and solvent induced crystallization: the substrates show a periodic and regular alternation of oriented crystalline lamellae. Grazing incidence X-ray diffraction shows that the crystalline lamellae of PC have a preferential (a, c) contact plane. Moreover, the substrates show a bilayer structure made of a 60 nm-thick semi-crystalline overlayer atop an amorphous underlayer. UV–vis spectroscopy shows that the polymorphism of the ZnPc films is not modified by the surface structure of the PC substrate (amorphous versus semi-crystalline). However, the statistical analysis of domain size and density versus substrate temperature Ts evidences different apparent activation energies of the growth mechanism. High Resolution Transmission Electron Microscopy suggests that twinning along a (2 ?1 0) plane accounts for the bifurcations of the in-plane b-axis direction of the ZnPc nanocrystals. On oriented substrates of PC, such bifurcations are partly suppressed by the nanocorrugation of the surface, resulting in larger apparent domain sizes and unidirectional in-plane orientation.  相似文献   
170.
Units and components of the powerful power equipment are exposed to the big static and dynamic load. An example of such equipments is turbines hydraulic power plant and, especially, hydroelectric pumped storage power plant. Existing techniques of control of a vibrating condition do not consider: very wide frequency range of vibrating processes, difficult character of such processes in the form of the sum multiharmonic, random and close to shock processes. Such techniques usually do not consider intervals of start-up and stop, and also work on transitive modes when loadings on a construction are maximum. Available techniques of an estimation of admissible level of vibrating influence and tests for vibration durability are not harmonized enough among themselves. Various known interpretations of communication of vibrating characteristics and durability estimations on mechanical pressure at broadband vibrating influence yield ambiguous result. On the basis of the analysis of the published information, we attempt to formulate the requirement to system of vibrating monitoring of the hydraulic turbine and power motor pumps. System should provide data acquisition and the analysis of the data on a vibrating condition taking into account accumulation of vibrating influences and long term of operation on the basis of estimation methods as low-cycle, and high-cycle (gigacycle) fatigue is made.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号