This paper presents a strategy for the design and organization of materials for Web‐based instruction (WBI) founded upon cognitive modeling for the identification and organization of the major concepts in the domain of interest, based upon the Pathfinder paradigm. The original purpose of the Pathfinder paradigm was to model aspects of human semantic (associative) memory. A brief introduction to the Pathfinder paradigm is presented, and the rationale for its use in WBI is discussed. The development of this paradigm for WBI, in the context of eliciting and representing knowledge from domain experts, and its use in a pilot study is described. The domain used for the pilot study was the A* search algorithm, embedded within an introductory course in artificial intelligence. Assessment of the paradigm is also discussed, and preliminary methods are applied to the pilot study. 相似文献
Applications of optical technologies like vision care, digital imaging or data communication play a decisive role in our daily life. Manipulation of light is mainly done using optical lenses. Beside mineral lenses, transparent plastic materials become more and more important. The optical and mechanical properties of lenses are crucially improved by high‐quality coatings. These includes primarily anti‐reflective coatings to enhance light transmission, hard coats to improve scratch resistance of the sensitive plastic substrates and finally clean coats to inhibit dusting of the lenses and to ease cleaning. In the following we present modern vacuum coating technologies for industrial refinement of optical substrates. The focal point is set to the coating of plastic eyeglass lenses using a revolutionary inline technology. On one hand the technology merges all coating steps in a fully automated system and enables on the other hand the flexible combination of different layer stacks necessary for RX‐production of ophthalmic lenses. This inline technology is available by the coating system OPTICUS. The design of the OPTICUS is described in the last chapter. 相似文献
Polyacrylonitrile (PAN) based high strength carbon fibers were anodically oxidized using the galvanostatic mode in alkaline electrolyte solutions to influence the chemical surface composition. The change of chemical and physical properties was investigated using scanning electron microscopy (SEM), photoelectron spectroscopy (XPS), energy dispersive X-ray analysis (EDX) and contact angle as well as zeta (ζ)-potential measurements.
An initially improved wettability for polar liquids, particularly water, was observed for oxidized carbon fibers. This result was confirmed by ζ-potential measurements. The chemical state of the oxygen containing surface groups changes during anodic oxidation in K2CO3/KOH due to further oxidation of C–OH and C=O groups to COOH groups. Therefore the surface acidity increases, which leads to a shift of the isoelectric point to lower pH values and increases the negative ζplateau value. The ζ–pH as well as the ζ–concentration dependence show the same tendency. During anodic oxidation of carbon fibers in KNO3/KOH electrolyte solution beside ‘normal’ (like C–OH, C=O and COOH) surface oxides also carboxylate groups (COO−K+) were formed at the fiber surface in contrast to an oxidation in K2CO3/KOH which introduces ‘normal' surface oxides. No influence could be observed of such an anodic oxidation on the single fiber tensile strength. Contact angle measurements of polycarbonate melt droplets onto single carbon fibers show no dependence of the surface composition. The interfacial shear strength, measured using the microdroplet pull-off test were compared with the thermodynamic work of adhesion. The calculated as well as the measured adhesion show the same absence of any influence of fiber treatment. 相似文献
Widespread approaches to fabricate surfaces with robust micro‐ and nanostructured topographies have been stimulated by opportunities to enhance interface performance by combining physical and chemical effects. In particular, arrays of asymmetric surface features, such as arrays of grooves, inclined pillars, and helical protrusions, have been shown to impart unique anisotropy in properties including wetting, adhesion, thermal and/or electrical conductivity, optical activity, and capability to direct cell growth. These properties are of wide interest for applications including energy conversion, microelectronics, chemical and biological sensing, and bioengineering. However, fabrication of asymmetric surface features often pushes the limits of traditional etching and deposition techniques, making it challenging to produce the desired surfaces in a scalable and cost‐effective manner. We review and classify approaches to fabricate arrays of asymmetric 2D and 3D surface features, in polymers, metals, and ceramics. Analytical and empirical relationships among geometries, materials, and surface properties are discussed, especially in the context of the applications mentioned above. Further, opportunities for new fabrication methods that combine lithography with principles of self‐assembly are identified, aiming to establish design principles for fabrication of arbitrary 3D surface textures over large areas. 相似文献
Surfactant-passivated germanium nanocrystals (Ge(0) NCs) 3-5 nm in diameter were synthesized and encapsulated with functionalized phospholipids to yield water-soluble Ge(0) NCs. Upon encapsulation, the NCs retained their cubic crystalline phase and displayed good resistance to oxidation, as determined by transmission electron microscopy and X-ray photoelectron spectroscopy. As a test of their cell compatibility, the ability of carboxyfluorescein (CF)-labeled dinitrophenyl (DNP)-functionalized Ge(0) NCs to crosslink dinitrophenol-specific immunoglobulin E antibodies on the surface of mast cells (RBL-2H3) was examined in vitro. Treatment with a multivalent DNP antigen (i.e., DNP-Ge(0) NCs or CF-DNP-Ge(0) NCs) caused crosslinking of FcepsilonRI receptors and cellular responses, which were evaluated with morphological and colorimetric assays and live-cell fluorescence microscopy. Incubation of RBL-2H3 cells with Ge(0) NCs for approximately 24 h gave less than a 2 % increase in cell death as compared to DNP-functionalized bovine serum albumin. When irradiated with near-infrared (NIR) radiation (lambda(exc)=770 nm, 1.1 W cm(-2)) from a continuous-wave Ti:sapphire laser, the bulk-solution temperature of a toluene solution containing 20 mg mL(-1) Ge(0) NCs increased by approximately 35 degrees C within 5 min. Phospholipid-encapsulated water-soluble Ge(0) NCs at concentrations of 1.0 mg mL(-1) also displayed stable photothermal behavior under repetitive and prolonged NIR laser exposures in water, to yield a temperature increase of approximately 20 degrees C within 5 min (lambda(exc)=770 nm, 0.9 W cm(-2)). The photothermal efficiency of water-soluble Ge(0) NCs compares favorably with a recent report for Au nanoshells. 相似文献
Total mixed rations containing conventional forage sorghum, brown midrib (bmr)-6 forage sorghum, bmr-18 forage sorghum, or corn silage were fed to Holstein dairy cows to determine the effect on lactation, ruminal fermentation, and total tract nutrient digestion. Sixteen multiparous cows (4 ruminally fistulated; 124 d in milk) were assigned to 1 of 4 diets in a replicated Latin square design with 4-wk periods (21-d adaptation and 7 d of collection). Diets consisted of 40% test silage, 10% alfalfa silage, and 50% concentrate mix (dry basis). Acid detergent lignin concentration was reduced by 21 and 13%, respectively, for the bmr-6 and bmr-18 sorghum silages when compared with the conventional sorghum. Dry matter intake was not affected by diet. Production of 4% fat-corrected milk was greatest for cows fed bmr-6 (33.7 kg/d) and corn silage (33.3 kg/d), was least for cows fed the conventional sorghum (29.1 kg/d), and was intermediate for cows fed the bmr-18 sorghum (31.2 kg/d), which did not differ from any other diet. Total tract neutral detergent fiber (NDF) digestibility was greatest for the bmr-6 sorghum (54.4%) and corn silage (54.1%) diets and was lower for the conventional (40.8%) and bmr-18 sorghum (47.9%) diets. In situ extent of NDF digestion was greatest for the bmr-6 sorghum (76.4%) and corn silage (79.0%) diets, least for the conventional sorghum diet (70.4%), and intermediate for the bmr-18 sorghum silage diet (73.1%), which was not different from the other diets. Results of this study indicate that the bmr-6 sorghum hybrid outperformed the conventional sorghum hybrid; the bmr-18 sorghum was intermediate between conventional and bmr-6 in most cases. Additionally, the bmr-6 hybrid resulted in lactational performance equivalent to the corn hybrid used in this study. There are important compositional differences among bmr forage sorghum hybrids that need to be characterized to predict animal response accurately. 相似文献
Long-range electron transfer may occur via two fundamentally different mechanisms depending on the combination of electron donor, acceptor, and the bridging medium between the two redox partners. Activating the so-called hopping mechanism requires matching the energy levels of the donor and the bridge. If electrons from the donor can thermodynamically access bridge-localized redox states, the bridge may be temporarily reduced before the electron is forwarded to the acceptor. As a result, electron transfer rates may demonstrate an extremely shallow dependence on distance. When transient reduction of the bridging medium is thermodynamically impossible, a tunneling mechanism that exponentially depends on distance becomes important for electron transport. Fifty years ago, superexchange theory had already predicted that electron transfer rates should be affected by donor-bridge-acceptor energetics even in the tunneling regime, in which the energy gap (Δε) is too large for electrons to hop from the donor onto the bridge. However, because electron tunneling rates depend on many parameters and the influence of donor-bridge energy gaps is difficult to distinguish from other influences, direct experimental support for the theoretical prediction has been difficult to find. Because of remarkable progress, particularly in the past couple of years, researchers have finally found direct evidence for the long-sought but elusive tunneling-energy gap effect. After a brief introduction to the theory of the tunneling mechanism, this Account discusses recent experimental results describing the importance of the tunneling-energy gap. Experimental studies in this area usually combine synthetic chemistry with electrochemical investigations and time-resolved (optical) spectroscopy. For example, we present a case study of hole tunneling through synthetic DNA hairpins, in which different donor-acceptor couples attached to the same hairpins resulted in tunneling rates with significantly different dependences on distance. Recent systematic studies of conjugated molecular bridges have demonstrated the same result: The distance decay constant (β), which describes the steepness of the exponential decrease of charge tunneling rates with increasing donor-acceptor distance, is not a property of the bridge alone; rather it is a sensitive function of the entire donor-bridge-acceptor (D-b-A) combination. In selected cases, researchers have found a quantitative relationship between the experimentally determined distance decay constant (β) and the magnitude of the tunneling-energy gap (Δε). The rates and efficiencies of charge transfer reactions occurring over long distances are of pivotal importance in light-to-chemical energy conversion and molecular electronics. Tunneling-energy gap effects play an intriguing role in the formation of long-lived charge-separated states after photoexcitation: The kinetic stabilization of these charge-separated states frequently exploits the inverted driving-force effect. Recent studies indicate that tunneling-energy gap effects can differentiate the distance dependences of energy-storing charge-separation reactions from those of energy-wasting charge-recombination processes. Thus, the exploitation of tunneling-energy gap effects may provide an additional way to obtain long-lived charge-separated states. 相似文献
A key question in the field of ceramics and catalysis is how and to what extent residual water in the reactive environment of a metal oxide particle powder affects particle coarsening and morphology. With X‐ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), we investigated annealing‐induced morphology changes on powders of MgO nanocubes in different gaseous H2O environments. The use of such a model system for particle powders enabled us to describe how adsorbed water that originates from short exposure to air determines the evolution of MgO grain size, morphology, and microstructure. While cubic nanoparticles with a predominant abundance of (100) surface planes retain their shape after annealing to T = 1173 K under continuous pumping with a base pressure of water p(H2O) = 10?5 mbar, higher water partial pressures promote mass transport on the surfaces and across interfaces of such particle systems. This leads to substantial growth and intergrowth of particles and simultaneously favors the formation of step edges and shallow protrusions on terraces. The mass transfer is promoted by thin films of water providing a two‐dimensional solvent for Mg2+ ion hydration. In addition, we obtained direct evidence for hydroxylation‐induced stabilization of (110) faces and step edges of the grain surfaces. 相似文献