首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2822篇
  免费   5篇
化学工业   17篇
金属工艺   1篇
机械仪表   1篇
矿业工程   1篇
轻工业   5篇
无线电   7篇
一般工业技术   6篇
冶金工业   2787篇
原子能技术   2篇
  2020年   4篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   1篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2003年   3篇
  2000年   3篇
  1999年   84篇
  1998年   913篇
  1997年   489篇
  1996年   333篇
  1995年   183篇
  1994年   139篇
  1993年   148篇
  1992年   17篇
  1991年   43篇
  1990年   32篇
  1989年   33篇
  1988年   33篇
  1987年   44篇
  1986年   36篇
  1985年   20篇
  1984年   1篇
  1983年   3篇
  1982年   10篇
  1981年   16篇
  1980年   20篇
  1979年   1篇
  1978年   2篇
  1977年   56篇
  1976年   133篇
  1975年   5篇
  1955年   1篇
排序方式: 共有2827条查询结果,搜索用时 406 毫秒
161.
162.
163.
164.
165.
To establish the process by which transplanted cells integrate into the liver parenchyma, we used dipeptidyl peptidase IV-deficient F344 rats as hosts. On intrasplenic injection, transplanted hepatocytes immediately entered liver sinusoids, along with attenuation of portal vein radicles on angiography. However, a large fraction of transplanted cells (>70%) was rapidly cleared from portal spaces by phagocyte/macrophage responses. On the other hand, transplanted hepatocytes entering the hepatic sinusoids showed superior survival. These cells translocated from sinusoids into liver plates between 16 and 20 hours after transplantation, during which electron microscopy showed disruption of the sinusoidal endothelium. Interestingly, production of vascular endothelial growth factor was observed in hepatocytes before endothelial disruptions. Portal hypertension and angiographic changes resulting from cell transplantation resolved promptly. Integration of transplanted hepatocytes in the liver parenchyma required cell membrane regenesis, with hybrid gap junctions and bile canaliculi forming over 3 to 7 days after cell transplantation. We propose that strategies to deposit cells into distal hepatic sinusoids, to disrupt sinusoidal endothelium for facilitating cell entry into liver plates, and to accelerate cell integrations into liver parenchyma will advance applications of hepatocyte transplantation.  相似文献   
166.
167.
168.
Hybrid magnetic nanostructures with high coercivity have immense application potential in various fields. Nickel (Ni) electrodeposited inside Cobalt (Co) nanotubes (a new system named Ni @ Co nanorods) were fabricated using a two-step potentiostatic electrodeposition method. Ni @ Co nanorods were crystalline, and they have an average diameter of 150 nm and length of ~15 μm. The X-ray diffraction studies revealed the existence of two separate phases corresponding to Ni and Co. Ni @ Co nanorods exhibited a very high longitudinal coercivity. The general mobility-assisted growth mechanism proposed for the growth of one-dimensional nanostructures inside nano porous alumina during potentiostatic electrodeposition is found to be valid in this case too.  相似文献   
169.
Previous work from this laboratory has demonstrated that monosynaptic inputs from the brachium of the inferior colliculus (BIC) to the medial subdivision of the medial geniculate nucleus (mMG) strengthen as a result of associative conditioning with an acoustic conditioned stimulus (i.e., fear conditioning). One model that has been proposed to underlie certain types of neuronal plasticity involves the recruitment of N-methyl-D-aspartic acid (NMDA)-type glutamate receptors. The purpose of the present study was to examine the relative contributions of glutamatergic NMDA and non-NMDA receptors to synaptic transmission within this pathway. Individual contributions of the specific receptor types were assessed through the use of 2-amino-5-phosphonovaleric acid (AP5), a selective NMDA receptor antagonist, and 6-cyano-5-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist. Bipolar stimulating electrodes were stereotaxically implanted in BIC and recording electrodes (attached to dual 32-gauge cannulae for delivery of drug) were positioned in mMG of New Zealand albino rabbits. Single pulses (150 micros, 100-350 microA) delivered to BIC resulted in short-latency (<4 ms) responses in mMG. BIC-evoked single-unit activity was recorded from mMG before, during, and at several intervals after injection of AP5, CNQX, and/or artificial cerebrospinal fluid (ACSF). Injection of either AP5 or CNQX, but not ACSF, significantly attenuated the short-latency BIC-evoked responses in the vast majority of cells tested. These findings suggest that the monosynaptic pathway from BIC to mMG is glutamatergic and that this pathway frequently employs NMDA-type receptors during electrically stimulated synaptic transmission. Due to the NMDA receptors' proposed role in plasticity (e.g., long-term potentiation), these results may have implications for understanding the mechanisms of synaptic plasticity observed at this synapse during associative learning.  相似文献   
170.
Whole cell recordings were performed on acutely dissociated neurons from the horizontal limb of the diagonal band of Broca (hDBB) from rats to elucidate the ionic mechanisms of action of neurotensin. Neurotensin caused a decrease in whole cell voltage-activated outward currents and failed to elicit a response when Ca2+ influx was blocked by changing the external solution to the one containing 0 mM Ca2+ and 50 microM Cd2+, suggesting the involvement of Ca2+-dependent conductances. Charybdotoxin, a specific blocker of voltage-sensitive calcium-activated K+ channels (IC), caused a decrease in outward currents comparable with that caused by blocking calcium influx and occluded the neurotensin-induced decrease in outward currents. Similarly, 50 microM tetraethylammonium ions also blocked the neurotensin response. Also neurotensin reduced whole cell barium currents (IBa) and calcium currents (ICa). Amiloride and omega-conotoxin GVIA, but not nimodipine, were able to eliminate the neurotensin-induced decrease in IBa. Thus T- and N- but not L-type calcium channels are subject to modulation by neurotensin, and this may account for its effects on IC. The predicted changes in action potential as a result of the blockade of currents through calcium channels culminating into changes in IC were confirmed in the bridge current-clamp recordings. Specifically, neurotensin application led to depolarization of the resting membrane potential, broadening of spike and a decrease in afterhyperpolarization and accommodation. These alterations in action potential characteristics that resulted in increased firing rate and excitability of the hDBB neurons also were produced by application of charybdotoxin. Neurotensin effects on these properties were occluded by 2 - [(1 - 7 - chloro - 4 - quinolinyl) - 5 - (2, 6 - di - methoxyphenyl) pyrazol-3-yl) carbonylamino] tricyclo (3.3.1.1.)decan-2-carboxylic acid, a nonpeptide high-affinity neurotensin receptor antagonist. Neurotensin blockade of IC, possibly through ICa, is a potential physiological mechanism whereby this peptide may evoke alterations in the cortical arousal, sleep-wake cycle, and theta rhythm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号