Realizing photon upconversion in nanostructures is important for many next- generation applications such as biological labelling, infrared detectors and solar cells. In particular nanowires are attractive for optoelectronics because they can easily be electrically contacted. Here we demonstrate photon upconversion with a large energy shift in highly n-doped InP nanowires. Crucially, the mechanism responsible for the upconversion in our system does not rely on multi-photon absorption via intermediate states, thus eliminating the need for high photon fluxes to achieve upconversion. The demonstrated upconversion paves the way for utilizing nanowires--with their inherent flexibility such as electrical contactability and the ability to position individual nanowires--for photon upconversion devices also at low photon fluxes, possibly down to the single photon level in optimised structures. 相似文献
In-air epitaxy of nanostructures (Aerotaxy) has recently emerged as a viable route for fast, large-scale production. In this study, we use small-angle X-ray scattering to perform direct in-flight characterizations of the first step of this process, i.e., the engineered formation of Au and Pt aerosol nanoparticles by spark generation in a flow of N2 gas. This represents a particular challenge for characterization because the particle density can be extremely low in controlled production. The particles produced are examined during production at operational pressures close to atmospheric conditions and exhibit a lognormal size distribution ranging from 5–100 nm. The Au and Pt particle production and detection are compared. We observe and characterize the nanoparticles at different stages of synthesis and extract the corresponding dominant physical properties, including the average particle diameter and sphericity, as influenced by particle sintering and the presence of aggregates. We observe highly sorted and sintered spherical Au nanoparticles at ultra-dilute concentrations (< 5 × 105 particles/cm3) corresponding to a volume fraction below 3 × 10–10, which is orders of magnitude below that of previously measured aerosols. We independently confirm an average particle radius of 25 nm via Guinier and Kratky plot analysis. Our study indicates that with high-intensity synchrotron beams and careful consideration of background removal, size and shape information can be obtained for extremely low particle concentrations with industrially relevant narrow size distributions.
A review and expansion of the fundamental processes of the vapor–liquid–solid (VLS) growth mechanism for nanowires is presented. Although the focus is on nanowires, most of the concepts may be applicable to whiskers, nanotubes, and other unidirectional growth. Important concepts in the VLS mechanism such as preferred deposition, supersaturation, and nucleation are examined. Nanowire growth is feasible using a wide range of apparatuses, material systems, and growth conditions. For nanowire growth the unidirectional growth rate must be much higher than growth rates of other surfaces and interfaces. It is concluded that a general, system independent mechanism should describe why nanowires grow faster than the surrounding surfaces. This mechanism is based on preferential nucleation at the interface between a mediating material called the collector and a crystalline solid. The growth conditions used mean the probability of nucleation is low on most of the surfaces and interfaces. Nucleation at the collector‐crystal interface is however different and of special significance is the edge of the collector‐crystal interface where all three phases meet. Differences in nucleation due to different crystallographic interfaces can occur even in two phase systems. We briefly describe how these differences in nucleation may account for nanowire growth without a collector. Identifying the mechanism of nanowire growth by naming the three phases involved began with the naming of the VLS mechanism. Unfortunately this trend does not emphasize the important concepts of the mechanism and is only relevant to one three phase system. We therefore suggest the generally applicable term preferential interface nucleation as a replacement for these different names focusing on a unifying mechanism in nanowire growth. 相似文献
The formation of nanostructures with controlled size and morphology has been the focus of intensive research in recent years. Such nanostructures are important in the development of nanoscale devices and in the exploitation of the properties of nanomaterials. Here we show how tree-like nanostructures ('nanotrees') can be formed in a highly controlled way. The process involves the self-assembled growth of semiconductor nanowires via the vapour-liquid-solid growth mode. This bottom-up method uses initial seeding by catalytic nanoparticles to form the trunk, followed by the sequential seeding of branching structures. Each level of branching is controlled in terms of branch length, diameter and number, as well as chemical composition. We show, by high-resolution transmission electron microscopy, that the branching mechanism gives continuous crystalline (monolithic) structures throughout the extended and complex tree-like structures. The controlled seeding method that we report here has potential as a generic means of forming complex branching structures, and may also offer opportunities for applications, such as the mimicking of photosynthesis in nanotrees. 相似文献
We report on low-temperature transport measurements on single and double quantum dots defined using local gates to electrostatically deplete InAs nanowires grown by chemical beam epitaxy. This technique allows us to define multiple quantum dots along a semiconducting nanowire and tune the coupling between them. 相似文献
We have investigated spin accumulation in Ni/Au/Ni single-electron transistors assembled by atomic force microscopy. The fabrication technique is unique in that unconventional hybrid devices can be realized with unprecedented control, including real-time tunable tunnel resistances. A grid of Au disks, 30 nm in diameter and 30 nm thick, is prepared on a SiO2 surface by conventional e-beam writing. Subsequently, 30 nm thick ferromagnetic Ni source, drain, and side-gate electrodes are formed in similar process steps. The width and length of the source and drain electrodes were different to exhibit different coercive switching fields. Tunnel barriers of NiO are realized by sequential Ar and O2 plasma treatment. By use of an atomic force microscope with specially designed software, a single nonmagnetic Au nanodisk is positioned into the 25 nm gap between the source and drain electrodes. The resistance of the device is monitored in real time while the Au disk is manipulated step-by-step with angstrom-level precision. Transport measurements in magnetic field at 1.7 K reveal no clear spin accumulation in the device, which can be attributed to fast spin relaxation in the Au disk. From numerical simulations using the rate-equation approach of orthodox Coulomb blockade theory, we can put an upper bound of a few nanoseconds on the spin-relaxation time for electrons in the Au disk. To confirm the magnetic switching characteristics and spin injection efficiency of the Ni electrodes, we fabricated a test structure consisting of a Ni/NiO/Ni magnetic tunnel junction with asymmetric dimensions of the electrodes similar to those of the single-electron transistors. Magnetoresistance measurements on the test device exhibited clear signs of magnetic reversal and a maximum tunneling magnetoresistance of 10%, from which we deduced a spin polarization of about 22% in the Ni electrodes. 相似文献
We report on temperature-dependent charge transport in heavily doped Mn(+)-implanted GaAs nanowires. The results clearly demonstrate that the transport is governed by temperature-dependent hopping processes, with a crossover between nearest neighbor hopping and Mott variable range hopping at about 180 K. From detailed analysis, we have extracted characteristic hopping energies and corresponding hopping lengths. At low temperatures, a strongly nonlinear conductivity is observed which reflects a modified hopping process driven by the high electric field at large bias. 相似文献
Results on fracture toughness of natural apophyllite crystals when subjected to impact are presented. The morphology of the cracks and fracture has been studied. It is found that the crack formation does not show any anisotropic property and remains the same whatever may be the orientation of the crystal. The average values of the fracture toughness KC and brittleness index, as determined from measurements of crack length, are estimated to be 0.107 gμm-3/2and 4.19μm-1/2 respectively for the a(100) plane. The yield strength forα(100), p(111) and c(001) planes of apophyllite crystals for lower loads is 2250. 2160 and 1840 MPa and for higher loads is 1510, 1600 and 1430 MPa respectively 相似文献
The effects of the beta2-adrenoceptor agonist salbutamol (Slb) on isometric and isotonic contractile properties of the rat diaphragm muscle (Diamus) were examined. A loading dose of 25 microg/kg Slb was administered intracardially before Diamus excision to ensure adequate diffusion. Studies were then performed with 0.05 microM Slb in the in vitro tissue chamber. cAMP levels were determined by radioimmunoassay. Compared with controls (Ctl), cAMP levels were elevated after Slb treatment. In Slb-treated rats, isometric twitch and maximum tetanic force were increased by approximately 40 and approximately 20%, respectively. Maximum shortening velocity increased by approximately 15% after Slb treatment, and maximum power output increased by approximately 25%. During repeated isotonic activation, the rate of fatigue was faster in the Slb-treated Diamus, but both Slb-treated and Ctl Diamus fatigued to the same maximum power output. Still, endurance time during repetitive isotonic contractions was approximately 10% shorter in the Slb-treated Diamus. These results are consistent with the hypothesis that beta-adrenoceptor stimulation by Slb enhances Diamus contractility and that these effects of Slb are likely mediated, at least in part, by elevated cAMP. 相似文献